THE LIE GROUPOID ANALOGUE OF A SYMPLECTIC LIE GROUP

被引:0
|
作者
Pham, David N. [1 ]
机构
[1] QCC CUNY, Dept Math & Comp Sci, Bayside, NY 11364 USA
来源
ARCHIVUM MATHEMATICUM | 2021年 / 57卷 / 02期
关键词
Lie groups; Lie groupoids; symplectic Lie algebroids;
D O I
10.5817/AM2021-2-61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a t-symplectic Lie groupoid; the "t" is motivated by the fact that each target fiber of a t-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid G paired right arrows M, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on AG (the associated Lie algebroid) and t-symplectic Lie groupoid structures on G paired right arrows M. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a t-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [1] The Lie group of bisections of a Lie groupoid
    Schmeding, Alexander
    Wockel, Christoph
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (01) : 87 - 123
  • [2] The Lie group of bisections of a Lie groupoid
    Alexander Schmeding
    Christoph Wockel
    [J]. Annals of Global Analysis and Geometry, 2015, 48 : 87 - 123
  • [3] On the tangent Lie group of a symplectic Lie group
    David N. Pham
    [J]. Ricerche di Matematica, 2019, 68 : 699 - 704
  • [4] On the tangent Lie group of a symplectic Lie group
    Pham, David N.
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (02) : 699 - 704
  • [5] The Lie group of vertical bisections of a regular Lie groupoid
    Schmeding, Alexander
    [J]. FORUM MATHEMATICUM, 2020, 32 (02) : 479 - 489
  • [6] Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
    Iglesias, David
    Marrero, Juan Carlos
    Martin De Diego, David
    Martinez, Eduardo
    Padron, Edith
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [7] EXTENSION OF LIE GROUPOID
    ABIB, OR
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (01): : 43 - 44
  • [8] LIE GROUPOIDS OF MAPPINGS TAKING VALUES IN A LIE GROUPOID
    Amiri, Habib
    Gloeckner, Helge
    Schmeding, Alexander
    [J]. ARCHIVUM MATHEMATICUM, 2020, 56 (05): : 307 - 356
  • [9] The reduced spaces of a symplectic Lie group action
    Juan-Pablo Ortega
    Tudor S. Ratiu
    [J]. Annals of Global Analysis and Geometry, 2006, 30
  • [10] The stratified spaces of a symplectic Lie group action
    Ortega, Juan-Pablo
    Ratiu, Tudor S.
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2006, 58 (01) : 51 - 75