THE LIE GROUPOID ANALOGUE OF A SYMPLECTIC LIE GROUP

被引:0
|
作者
Pham, David N. [1 ]
机构
[1] QCC CUNY, Dept Math & Comp Sci, Bayside, NY 11364 USA
来源
ARCHIVUM MATHEMATICUM | 2021年 / 57卷 / 02期
关键词
Lie groups; Lie groupoids; symplectic Lie algebroids;
D O I
10.5817/AM2021-2-61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a t-symplectic Lie groupoid; the "t" is motivated by the fact that each target fiber of a t-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid G paired right arrows M, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on AG (the associated Lie algebroid) and t-symplectic Lie groupoid structures on G paired right arrows M. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a t-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored.
引用
收藏
页码:61 / 81
页数:21
相关论文
共 50 条
  • [41] Classical limit of Lie groupoid C*-algebras
    Ramazan, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (07): : 603 - 606
  • [42] Multi-symplectic Lie Group Thermodynamics for Covariant Field Theories
    Chirco, Goffredo
    Laudato, Marco
    Mele, Fabio M.
    [J]. GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 55 - 65
  • [43] Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
    Capriotti, S.
    Montani, H.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [44] Symplectic Accelerated Optimization on SO(3) with Lie Group Variational Integrators
    Sharma, Harsh
    Lee, Taeyoung
    Patil, Mayuresh
    Woolsey, Craig
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2826 - 2831
  • [45] The portion of matrices with real spectrum in the Lie algebra of the real symplectic group
    Krivonogov, A. S.
    Churkin, V. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (06) : 1056 - 1072
  • [46] The portion of matrices with real spectrum in the Lie algebra of the real symplectic group
    A. S. Krivonogov
    V. A. Churkin
    [J]. Siberian Mathematical Journal, 2014, 55 : 1056 - 1072
  • [47] An Abelian Quotient of the Symplectic Derivation Lie Algebra of the Free Lie Algebra
    Morita, Shigeyuki
    Sakasai, Takuya
    Suzuki, Masaaki
    [J]. EXPERIMENTAL MATHEMATICS, 2018, 27 (03) : 302 - 315
  • [48] Hom-Lie group and hom-Lie algebra from Lie group and Lie algebra perspective
    Merati, S.
    Farhangdoost, M. R.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (05)
  • [49] HIGHER ORDER CONNECTIONS ON LIE GROUPOID: APPLICATION TO MATERIALS
    Vasik, Petr
    [J]. MISKOLC MATHEMATICAL NOTES, 2013, 14 (02) : 705 - 711
  • [50] A Basis for Representations of Symplectic Lie Algebras
    A. I. Molev
    [J]. Communications in Mathematical Physics, 1999, 201 : 591 - 618