Renyi entropy of fuzzy dynamical systems

被引:8
|
作者
Giski, Zahra Eslami [1 ]
Ebrahimzadeh, Abolfazl [2 ]
Markechova, Dagmar [3 ]
机构
[1] Islamic Azad Univ, Young Researchers & Elite Club, Sirjan Branch, Sirjan, Iran
[2] Islamic Azad Univ, Young Researchers & Elite Club, Zahedan Branch, Zahedan, Iran
[3] Constantine Philosopher Univ Nitra, Dept Math, Fac Nat Sci, A Hlinku 1, SK-94901 Nitra, Slovakia
关键词
Fuzzy partition; Renyi entropy; Fuzzy dynamical system; Isomorphism;
D O I
10.1016/j.chaos.2019.01.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to the study of Renyi entropy in the fuzzy case. We define the Renyi entropy of a fuzzy partition and its conditional version and derive basic properties the suggested entropy measures. In particular, it was shown that the Renyi entropy of a fuzzy partition is monotonically decreasing. Consequently, using the proposed concept of Renyi entropy, the notion of Renyi entropy of a fuzzy dynamical system is introduced. Finally, it is proved that the Renyi entropy of a fuzzy dynamical system is invariant under isomorphism of fuzzy dynamical systems. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页码:244 / 253
页数:10
相关论文
共 50 条
  • [31] Scaled Entropy for Dynamical Systems
    Yun Zhao
    Yakov Pesin
    Journal of Statistical Physics, 2015, 158 : 447 - 475
  • [32] Naive entropy of dynamical systems
    Peter Burton
    Israel Journal of Mathematics, 2017, 219 : 637 - 659
  • [33] THE EXISTENCE OF ENTROPY FOR DYNAMICAL SYSTEMS
    KOZLOVSKII, VK
    SOVIET PHYSICS-SOLID STATE, 1960, 2 (05): : 841 - 846
  • [34] Logical entropy of dynamical systems
    Markechova, Dagmar
    Ebrahimzadeh, Abolfazl
    Giski, Zahra Eslami
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [35] Scaled Entropy for Dynamical Systems
    Zhao, Yun
    Pesin, Yakov
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (02) : 447 - 475
  • [36] Fractional Renyi entropy
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [37] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [38] Stabilizer Renyi Entropy
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Hamma, Alioscia
    PHYSICAL REVIEW LETTERS, 2022, 128 (05)
  • [39] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [40] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (02)