Quantum geometry and quantum mechanics of integrable systems

被引:3
|
作者
Karasev, M. V. [1 ]
机构
[1] Moscow Inst Elect & Math, Dept Appl Math, Moscow 109028, Russia
关键词
Mathematical Physic; Integrable System; Poisson Bracket; Symplectic Form; Symplectic Structure;
D O I
10.1134/S1061920809010051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum integrable systems and their classical counterparts are considered. We show that the symplectic structure and invariant tori of the classical system can be deformed by a quantization parameter &Aumlaut to produce a new (classical) integrable system. The new tori selected by the &Aumlaut -equidistance rule represent the spectrum of the quantum system up to O(z) and are invariant under quantum dynamics in the long-time range O(z). The quantum diffusion over the deformed tori is described. The analytic apparatus uses quantum action-angle coordinates explicitly constructed by an &Aumlaut -deformation of the classical action-angles.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条
  • [21] Conformal quantum mechanics & the integrable spinning Fishnet
    Sergey Derkachov
    Enrico Olivucci
    Journal of High Energy Physics, 2021
  • [22] Conformal quantum mechanics & the integrable spinning Fishnet
    Derkachov, Sergey
    Olivucci, Enrico
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
  • [23] Quantum mechanics of integrable spins on coadjoint orbits
    Hahn, SO
    Oh, P
    Kim, MH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1996, 29 (04) : 409 - 414
  • [24] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [25] Integrable Systems and Quantum Deformations
    Koroteev, Peter
    Beisert, Niklas
    INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 513 - +
  • [26] Quantum Monodromy in Integrable Systems
    San Vũ Ngoc
    Communications in Mathematical Physics, 1999, 203 : 465 - 479
  • [27] Quantum monodromy in integrable systems
    Ngoc, SV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) : 465 - 479
  • [28] Topics in quantum integrable systems
    Hikami, K
    Wadati, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) : 3569 - 3594
  • [29] Integrable systems and quantum groups
    Roditi, I
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (02) : 357 - 361
  • [30] Applications of quantum integrable systems
    Castro-Alvaredo, OA
    Fring, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2004, 19 : 92 - 116