Quantum geometry and quantum mechanics of integrable systems

被引:3
|
作者
Karasev, M. V. [1 ]
机构
[1] Moscow Inst Elect & Math, Dept Appl Math, Moscow 109028, Russia
关键词
Mathematical Physic; Integrable System; Poisson Bracket; Symplectic Form; Symplectic Structure;
D O I
10.1134/S1061920809010051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum integrable systems and their classical counterparts are considered. We show that the symplectic structure and invariant tori of the classical system can be deformed by a quantization parameter &Aumlaut to produce a new (classical) integrable system. The new tori selected by the &Aumlaut -equidistance rule represent the spectrum of the quantum system up to O(z) and are invariant under quantum dynamics in the long-time range O(z). The quantum diffusion over the deformed tori is described. The analytic apparatus uses quantum action-angle coordinates explicitly constructed by an &Aumlaut -deformation of the classical action-angles.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 50 条
  • [41] Contextuality and Noncommutative Geometry in Quantum Mechanics
    de Silva, Nadish
    Barbosa, Rui Soares
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 365 (02) : 375 - 429
  • [42] Quantum mechanics as a matrix symplectic geometry
    Djemai, AEF
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (03) : 519 - 556
  • [43] Quantum mechanics as a matrix symplectic geometry
    A. E. F. Djemai
    International Journal of Theoretical Physics, 1997, 36 : 571 - 571
  • [44] Contextuality and Noncommutative Geometry in Quantum Mechanics
    Nadish de Silva
    Rui Soares Barbosa
    Communications in Mathematical Physics, 2019, 365 : 375 - 429
  • [45] The Ehrenfest picture and the geometry of Quantum Mechanics
    Clemente-Gallardo, J.
    Marmo, G.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2013, 36 (03):
  • [46] Generating quantum matrix geometry from gauged quantum mechanics
    Hasebe, Kazuki
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [47] Integrable quantum mechanics, the permutation group and the second law
    McGuire, JB
    QUANTUM LIMITS TO THE SECOND LAW, 2002, 643 : 116 - 122
  • [48] QUANTUM-MECHANICS AND A COMPLETELY INTEGRABLE DYNAMIC SYSTEM
    STEEB, WH
    VANTONDER, AJ
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1987, 42 (08): : 819 - 824
  • [49] Quantum coherent transform of integrable Hamiltonian systems and quantum computing
    Blackmore, D
    Taneri, U
    Prykarpatsky, A
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XVI, PROCEEDINGS: COMPUTER SCIENCE III, 2002, : 105 - 110
  • [50] Quantum footprints of Liouville integrable systems
    Vu Ngoc, San
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (01)