Applications of quantum integrable systems

被引:1
|
作者
Castro-Alvaredo, OA [1 ]
Fring, A [1 ]
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
关键词
D O I
10.1142/S0217751X04020336
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present two applications of quantum integrable systems. First, we predict that it is possible to generate high harmonics from solid state devices by demonstrating that the emission spectrum of a minimally coupled laser field of frequency omega to an impurity system of a quantum wire, contains multiples of the incoming frequency. Second, by evaluating expressions for the conductance in the high temperature regime we show that multiples of the characteristic filling fractions of the Jain sequence, which occur in the fractional quantum Hall effect, can be obtained from quantum wires which are described by minimal affine Toda field theories.
引用
收藏
页码:92 / 116
页数:25
相关论文
共 50 条
  • [1] Infinite dimensional algebras and their applications to quantum integrable systems
    Fring, Andreas
    Kulish, Petr P.
    Manojlovic, Nenad
    Nagy, Zoltan
    da Costa, Joana Nunes
    Samtleben, Henning
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (19)
  • [2] New applications of quantum algebraically integrable systems in fluid dynamics
    Anne Boutet de Monvel
    Igor Loutsenko
    Oksana Yermolayeva
    [J]. Analysis and Mathematical Physics, 2013, 3 : 277 - 294
  • [3] New applications of quantum algebraically integrable systems in fluid dynamics
    de Monvel, Anne Boutet
    Loutsenko, Igor
    Yermolayeva, Oksana
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2013, 3 (03) : 277 - 294
  • [4] QUANTUM INTEGRABLE SYSTEMS
    WADATI, M
    NAGAO, T
    HIKAMI, K
    [J]. PHYSICA D, 1993, 68 (01): : 162 - 168
  • [5] QUANTUM INTEGRABLE SYSTEMS
    SEMENOVTIANSHANSKY, M
    [J]. ASTERISQUE, 1995, (227) : 365 - 387
  • [6] Integrable Systems and Quantum Deformations
    Koroteev, Peter
    Beisert, Niklas
    [J]. INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS, 2009, 1182 : 513 - +
  • [7] Integrable quantum Stackel systems
    Blaszak, Maciej
    Domanski, Ziemowit
    Sergyeyev, Artur
    Szablikowski, Blazej M.
    [J]. PHYSICS LETTERS A, 2013, 377 (38) : 2564 - 2572
  • [8] Quantum Monodromy in Integrable Systems
    San Vũ Ngoc
    [J]. Communications in Mathematical Physics, 1999, 203 : 465 - 479
  • [9] Topics in quantum integrable systems
    Hikami, K
    Wadati, M
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (08) : 3569 - 3594
  • [10] Quantum monodromy in integrable systems
    Ngoc, SV
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) : 465 - 479