Shifter circuits for {2n+1, 2n, 2n-1} RNS

被引:8
|
作者
Bakalis, D. [1 ]
Vergos, H. T. [2 ]
机构
[1] Univ Patras, Elect Lab, Dept Phys, Patras, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Patras, Greece
关键词
D O I
10.1049/el:20092067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Shifter circuits are introduced for residue number systems (RNS) with bases composed of the moduli set {2(n) + 1, 2(n), 2(n) - 1}. The proposed circuits are straightforward to design and their implementation has very small area and delay, making shift operations in RNS inexpensive.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [31] An improved RNS-to-binary converter for 7-modulus set {2n–5–1, 2n–3–1, 2n–2+1, 2n–1–1, 2n–1+1, 2n, 2n+1} for n even
    M V N Madhavi Latha
    Rashmi Ramesh Rachh
    P V Ananda Mohan
    Sādhanā, 2020, 45
  • [32] A High-speed and Area-efficient Sign Detector for Three Moduli Set RNS {2n, 2n-1, 2n+1}
    Kumar, Sachin
    Chang, Chip-Hong
    PROCEEDINGS OF 2015 IEEE 11TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2015,
  • [33] A Scaling-Assisted Signed Integer Comparator for the Balanced Five-Moduli Set RNS {2n-1, 2n, 2n+1, 2n+1-1, 2n-1-1}
    Kumar, Sachin
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (12) : 3521 - 3533
  • [34] A memoryless reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1-1}
    Vinod, AP
    Premkumar, AB
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2000, 10 (1-2) : 85 - 99
  • [35] Memoryless RNS-to-Binary Converters for the {2n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, Kazeem Alagbe
    Voicu, George Razvan
    Cotofana, Sorin Dan
    21ST IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2010,
  • [36] A VLSI-Efficient Signed Magnitude Comparator for {2n-1, 2n,2n+1-1} RNS
    Kumar, Sachin
    Chang, Chip-Hong
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 1966 - 1969
  • [37] Fast Sign Detection Algorithm for the RNS Moduli Set {2n+1-1, 2n-1, 2n}
    Xu, Minghe
    Bian, Zhenpeng
    Yao, Ruohe
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (02) : 379 - 383
  • [38] An Improved RNS Reverse Converter for the {22n+1-1, 2n, 2n-1} Moduli Set
    Gbolagade, K. A.
    Chaves, R.
    Sousa, L.
    Cotofana, S. D.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 2103 - 2106
  • [39] Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    Dadkhah, Chitra
    Kavehei, Omid
    Timarchi, Somayeh
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (04) : 823 - 835
  • [40] Design of Reverse Converters for a New Flexible RNS Five-Moduli Set {2k, 2n - 1, 2n + 1, 2n+1 - 1, 2n-1 - 1} (n Even) (vol 36, pg 4593, 2017)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (11) : 5197 - 5197