Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs

被引:86
|
作者
Molahosseini, Amir Sabbagh [1 ]
Navi, Keivan [2 ]
Dadkhah, Chitra [3 ]
Kavehei, Omid [4 ]
Timarchi, Somayeh [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Shahid Beheshti Univ, Dept Elect & Comp Engn, GC, Tehran 1983963113, Iran
[3] KN Toosi Univ Technol, Dept Elect Engn, Tehran 1969764499, Iran
[4] Univ Adelaide, Sch Elect & Elect Engn, Ctr High Performance Integrated Technol & Syst, Adelaide, SA 5005, Australia
关键词
Computer arithmetic; new Chinese remainder theorems (New CRTs); residue arithmetic; reverse converter; residue number system (RNS); TO-BINARY CONVERTER; HIGH-SPEED; NUMBER SYSTEM; RESIDUE; RNS; 2(N+1)-1;
D O I
10.1109/TCSI.2009.2026681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce two new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n+1) - 1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2(n) - 1,2(n), 2(n) + 1, 2(2n+1) - 1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n-1) - 1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n) - 2, 2(2n+1) - 3}
引用
收藏
页码:823 / 835
页数:13
相关论文
共 50 条
  • [1] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1}
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (04) : 244 - 248
  • [2] Efficiency Reverse Converter for 4-Moduli Set {22n, 22n+1-1, 2n+1, 2n-1} Based on New CRT-II
    Siao, Siang-Min
    Kuo, Yuan-Ching
    Sheu, Ming-Hwa
    Lin, Xin-Kun
    Chen, Tzu-Hsiung
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 1852 - +
  • [3] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1} (vol 59, pg 244, 2012)
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (05) : 317 - 317
  • [4] An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese remainder theorem
    Cao, B
    Chang, CH
    Srikanthan, T
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (10) : 1296 - 1303
  • [5] Area Efficient Memoryless Reverse Converter for New Four Moduli Set {2n-1, 2n-1, 2n+1, 22n+1,-1}
    Jaiswal, Ritesh Kumar
    Kumar, Raj
    Mishra, Ram Awadh
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (05)
  • [6] A Reverse Converter for the Enhanced Moduli Set {2n-1, 2n+1, 22n, 22n+1-1} Using CRT and MRC
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEEE ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2010), 2010, : 456 - 457
  • [7] Reverse converters for the moduli sets {22N-1, 2N, 22N+1} and {2N-3, 2N+1, 2N-1, 2N+3}
    Mohan, PVA
    2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 188 - 192
  • [8] Efficient VLSI design for RNS reverse converter based on new moduli set (2n-1, 2n+1, 22n+1)
    Lin, Su-Hon
    Sheu, Ming-Hwa
    Lin, Jing-Shiun
    Sheu, Wen-Tsai
    2006 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, 2006, : 2020 - +
  • [9] Reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M.
    Srikanthan, T.
    Clarke, C.T.
    Proceedings - Symposium on Computer Arithmetic, 1999, : 168 - 175
  • [10] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175