On optimal (v, 5, 2, 1) optical orthogonal codes

被引:15
|
作者
Buratti, Marco [1 ]
Pasotti, Anita [2 ]
Wu, Dianhua [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Brescia, Dipartimento Matemat, Fac Ingn, I-25133 Brescia, Italy
[3] Guangxi Normal Univ, Dept Math, Guilin 541004, Peoples R China
关键词
Optimal optical orthogonal code; Difference family; Difference matrix; RECURSIVE CONSTRUCTIONS; OPTIMAL OOCS; FAMILIES;
D O I
10.1007/s10623-012-9654-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The size of a (v, 5, 2, 1) optical orthogonal code (OOC) is shown to be at most equal to when v a parts per thousand 11 (mod 132) or v a parts per thousand 154 (mod 924), and at most equal to in all the other cases. Thus a (v, 5, 2, 1)-OOC is naturally said to be optimal when its size reaches the above bound. Many direct and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs are presented giving, in particular, a very strong indication about the existence of an optimal (p, 5, 2, 1)-OOC for every prime p a parts per thousand 1 (mod 12).
引用
收藏
页码:349 / 371
页数:23
相关论文
共 50 条
  • [1] On optimal (v, 5, 2, 1) optical orthogonal codes
    Marco Buratti
    Anita Pasotti
    Dianhua Wu
    Designs, Codes and Cryptography, 2013, 68 : 349 - 371
  • [2] Optimal (μ, 5, 2, 1) optical orthogonal codes of small
    Baicheva, Tsonka
    Topalova, Svetlana
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (3-4) : 165 - 177
  • [3] NEW OPTIMAL (v, {3, 5}, 1, Q) OPTICAL ORTHOGONAL CODES
    Yu, Huangsheng
    Wu, Dianhua
    Wang, Jinhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 811 - 823
  • [4] Optimal (v, 4, 2, 1) optical orthogonal codes with small parameters
    Baicheva, Tsonka
    Topalova, Svetlana
    JOURNAL OF COMBINATORIAL DESIGNS, 2012, 20 (02) : 142 - 160
  • [5] New results on optimal (v, 4, 2, 1) optical orthogonal codes
    Marco Buratti
    Koji Momihara
    Anita Pasotti
    Designs, Codes and Cryptography, 2011, 58 : 89 - 109
  • [6] New results on optimal (v, 4, 2, 1) optical orthogonal codes
    Buratti, Marco
    Momihara, Koji
    Pasotti, Anita
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 58 (01) : 89 - 109
  • [7] Constructions for optimal (v, 4, 1) optical orthogonal codes
    Ge, GN
    Yin, JX
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2998 - 3004
  • [8] Optimal ( 9v, 4, 1) optical orthogonal codes
    Fuji-Hara, R
    Miao, Y
    Yin, JX
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2001, 14 (02) : 256 - 266
  • [9] Optimal (4up, 5, 1) optical orthogonal codes
    Chang, YX
    Ji, L
    JOURNAL OF COMBINATORIAL DESIGNS, 2004, 12 (05) : 346 - 361
  • [10] Optimal optical orthogonal codes with λ>1
    Omrani, R
    Moreno, O
    Kumar, PV
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 366 - 366