On non-integrability of general systems of differential equations

被引:97
|
作者
Furta, SD
机构
[1] Dept. of Theoretical Mechanics, Moscow Aviation Institute, 125871 Moscow
来源
关键词
D O I
10.1007/BF00917577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article is aimed at finding an algebraic criterion of non-integrability of non-Hamiltonian systems of differential equations. The main idea is to use the so-called Kowalevsky exponents to reveal whether the system under consideration is integrable or not. The method used in this article is based on previous works by H. Yoshida. The article suggests improving the above technique in such a way that it can be applied to a wider class of differential equations.
引用
收藏
页码:112 / 131
页数:20
相关论文
共 50 条
  • [31] Non-integrability of ABC flow
    Maciejewski, A
    Przybylska, M
    PHYSICS LETTERS A, 2002, 303 (04) : 265 - 272
  • [32] On marginal deformations and non-integrability
    Giataganas, Dimitrios
    Zayas, Leopoldo A. Pando
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [33] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [34] Non-integrability criteria for Hamiltonians in the case of lame normal variational equations
    MoralesRuiz, JJ
    Simo, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (01) : 111 - 135
  • [35] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97
  • [36] Periodic orbits and non-integrability of Henon-Heiles systems
    Llibre, Jaume
    Jimenez-Lara, Lidia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (20)
  • [37] Dynamics of multibody chains in circular orbit: non-integrability of equations of motion
    Maciejewski, Andrzej J.
    Przybylska, Maria
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2016, 126 (04): : 297 - 311
  • [38] Non-integrability in Hamiltonian mechanics
    Ichtiaroglou, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2): : 21 - 31
  • [39] Dynamics of multibody chains in circular orbit: non-integrability of equations of motion
    Andrzej J. Maciejewski
    Maria Przybylska
    Celestial Mechanics and Dynamical Astronomy, 2016, 126 : 297 - 311
  • [40] Non-integrability and chaos for natural Hamiltonian systems with a random potential
    Enciso, Alberto
    Peralta-Salas, Daniel
    Romaniega, Alvaro
    ADVANCES IN MATHEMATICS, 2024, 437