On non-integrability of general systems of differential equations

被引:97
|
作者
Furta, SD
机构
[1] Dept. of Theoretical Mechanics, Moscow Aviation Institute, 125871 Moscow
来源
关键词
D O I
10.1007/BF00917577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article is aimed at finding an algebraic criterion of non-integrability of non-Hamiltonian systems of differential equations. The main idea is to use the so-called Kowalevsky exponents to reveal whether the system under consideration is integrable or not. The method used in this article is based on previous works by H. Yoshida. The article suggests improving the above technique in such a way that it can be applied to a wider class of differential equations.
引用
收藏
页码:112 / 131
页数:20
相关论文
共 50 条
  • [21] Non-integrability of some Painlevé VI-equations and dilogarithms
    E. Horozov
    T. Stoyanova
    Regular and Chaotic Dynamics, 2007, 12 : 622 - 629
  • [22] INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS
    KOZLOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) : 1 - 76
  • [23] Integrability and Non-integrability of Hamiltonian Normal Forms
    Ferdinand Verhulst
    Acta Applicandae Mathematicae, 2015, 137 : 253 - 272
  • [24] Non-integrability of some Hamiltonian systems in polar coordinates
    Sansaturio, ME
    VigoAguiar, I
    Ferrandiz, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (16): : 5869 - 5876
  • [25] Integrability and Non-integrability of Hamiltonian Normal Forms
    Verhulst, Ferdinand
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 253 - 272
  • [26] Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples
    R. Martínez
    C. Simó
    Regular and Chaotic Dynamics, 2009, 14 : 323 - 348
  • [27] Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples
    Martinez, R.
    Simo, C.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (03): : 323 - 348
  • [28] Non-integrability of cylindric billiards
    Simányi, N
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 303 - 306
  • [29] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112
  • [30] On marginal deformations and non-integrability
    Dimitrios Giataganas
    Leopoldo A. Pando Zayas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2014