On the Value of Service Demand Estimation for Auto-scaling

被引:17
|
作者
Bauer, Andre [1 ]
Grohmann, Johannes [1 ]
Herbst, Nikolas [1 ]
Kounev, Samuel [1 ]
机构
[1] Univ Wurzburg, Wurzburg, Germany
关键词
Service demand estimation; Auto-scaling; Online estimation; Elastic cloud computing;
D O I
10.1007/978-3-319-74947-1_10
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the context of performance models, service demands are key model parameters capturing the average time individual requests of different workload classes are actively processed. In a system under load, due to measurement interference, service demands normally cannot be measured directly, however, a number of estimation approaches exist based on high-level performance metrics. In this paper, we show that service demands provide significant benefits for implementing modern auto-scalers. Auto-scaling describes the process of dynamically adjusting the number of allocated virtual resources (e.g., virtual machines) in a data center according to the incoming workload. We demonstrate that even a simple auto-scaler that leverages information about service demands significantly outperforms auto-scalers solely based on CPU utilization measurements. This is shown by testing two approaches in three different scenarios. Our results show that the service demand-based auto-scaler outperforms the CPU utilization-based one in all scenarios. Our results encourage further research on the application of service demand estimates for resource management in data centers.
引用
收藏
页码:142 / 156
页数:15
相关论文
共 50 条
  • [21] An Auto-scaling Framework for Containerized Elastic Applications
    Tian Ye
    Xue Guangtao
    Qian Shiyou
    Li Minglu
    2017 3RD INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM), 2017, : 422 - 430
  • [22] Auto-scaling Using TOSCA Infrastructure as Code
    Cankar, Matija
    Luzar, Anze
    Tamburri, Damian A.
    SOFTWARE ARCHITECTURE, ECSA 2020 TRACKS AND WORKSHOPS, 2020, 1269 : 260 - 268
  • [23] DEPAS: a decentralized probabilistic algorithm for auto-scaling
    Nicolò M. Calcavecchia
    Bogdan A. Caprarescu
    Elisabetta Di Nitto
    Daniel J. Dubois
    Dana Petcu
    Computing, 2012, 94 : 701 - 730
  • [24] Categorization of Intercloud users and auto-scaling of resources
    Tamanna Jena
    J. R. Mohanty
    Suresh Chandra Satapathy
    Evolutionary Intelligence, 2021, 14 : 369 - 379
  • [25] DDoS Attack on Cloud Auto-scaling Mechanisms
    Bremler-Barr, Anat
    Brosh, Eli
    Sides, Mor
    IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,
  • [26] Proactive Auto-Scaling for Service Function Chains in Cloud Computing Based on Deep Learning
    Taha, Mohammad Bany
    Sanjalawe, Yousef
    Al-Daraiseh, Ahmad
    Fraihat, Salam
    Al-E'mari, Salam R.
    IEEE ACCESS, 2024, 12 : 38575 - 38593
  • [27] Elastic Auto-Scaling Architecture in Telco Cloud
    Cao, Dang Sao
    Nguyen, Dinh Tam
    Nguyen, Xuan Chinh
    Tran, Van Thuyet
    Nguyen, Hai Binh
    Lang, Khac Thuan
    Nguyen, Van Tuan
    Dao, Ngoc Lam
    Pham, Thanh Tu
    Cao, Ngoc Son
    Chu, Dinh Hung
    Nguyen, Phi Hung
    Pham, Cong Dan
    Nguyen, Duc Hai
    2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 401 - 406
  • [28] Efficient Hybriding Auto-Scaling for OpenStack Platforms
    Chen, Chia-Ching
    Chen, Shao-Jui
    Yin, Fan
    Wang, Wei-Jen
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 1079 - 1085
  • [29] An Auto-Scaling Framework for Heterogeneous Hadoop Systems
    Bibal, J. V. Benifa
    Dejey, D.
    INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2017, 26 (04)
  • [30] Categorization of Intercloud users and auto-scaling of resources
    Jena, Tamanna
    Mohanty, J. R.
    Satapathy, Suresh Chandra
    EVOLUTIONARY INTELLIGENCE, 2021, 14 (02) : 369 - 379