Auto-scaling Using TOSCA Infrastructure as Code

被引:5
|
作者
Cankar, Matija [1 ]
Luzar, Anze [1 ]
Tamburri, Damian A. [2 ]
机构
[1] XLAB Doo, Pod Brdom 100, Ljubljana 1000, Slovenia
[2] Eindhoven Univ Technol JADS, sHertogenbosch, Netherlands
关键词
Cloud computing; Scaling infrastructures; Autoscaling; TOSCA; Orchestration; Function-as-a-Service; FaaS;
D O I
10.1007/978-3-030-59155-7_20
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Autoscaling cloud infrastructures still remains a challenging endeavour during orchestration, given the many possible risks, options, and connected costs. In this paper we discuss the options for defining and enacting autoscaling using TOSCA standard templates and its own policy definition specifications. The goal is to define infrastructure blueprints to be self-contained, executable by an orchestrator that can take over autonomously all scaling tasks while maintaining acceptable structural and non-functional quality levels.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 50 条
  • [1] Social Auto-Scaling
    Smith, Peter
    Gonzalez-Velez, Horacio
    Caton, Simon
    2018 26TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2018), 2018, : 186 - 195
  • [2] VM auto-scaling methods for high throughput computing on hybrid infrastructure
    Choi, Jieun
    Ahn, Younsun
    Kim, Seoyoung
    Kim, Yoonhee
    Choi, Jaeyoung
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2015, 18 (03): : 1063 - 1073
  • [3] Model-driven auto-scaling of green cloud computing infrastructure
    Dougherty, Brian
    White, Jules
    Schnlidt, Douglas C.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2012, 28 (02): : 371 - 378
  • [4] VM auto-scaling methods for high throughput computing on hybrid infrastructure
    Jieun Choi
    Younsun Ahn
    Seoyoung Kim
    Yoonhee Kim
    Jaeyoung Choi
    Cluster Computing, 2015, 18 : 1063 - 1073
  • [5] Auto-Scaling with Apprenticeship Learning
    Hakimzadeh, Kamal
    Nicholson, Patrick K.
    Lugones, Diego
    PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON CLOUD COMPUTING (SOCC '18), 2018, : 512 - 512
  • [6] Cloud Auto-scaling Auditing Approach using Blockchain
    Alsharidah, Ahmad A.
    Barati, Masoud
    Bergami, Giacomo
    Ranjan, Rajiv
    2022 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING, UCC, 2022, : 391 - 398
  • [7] Cloud Infrastructure Estimation and Auto-Scaling Using Recurrent Cartesian Genetic Programming-Based ANN
    Ullah, Qazi Zia
    Khan, Gul Muhammad
    Hassan, Shahzad
    IEEE ACCESS, 2020, 8 : 17965 - 17985
  • [8] AMAS: Adaptive Auto-Scaling on the Edge
    Mukherjee, Saptarshi
    Sidhanta, Subhajit
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 618 - 621
  • [9] Auto-scaling of Scientific Workflows in Kubernetes
    Balis, Bartosz
    Bronski, Andrzej
    Szarek, Mateusz
    COMPUTATIONAL SCIENCE, ICCS 2022, PT II, 2022, : 33 - 40
  • [10] Auto-scaling HTCondor pools using Kubernetes compute resources
    Sfiligoi, Igor
    Defanti, Thomas
    Wurthwein, Frank
    PRACTICE AND EXPERIENCE IN ADVANCED RESEARCH COMPUTING 2022, 2022,