Bayesian density estimation for compositional data using random Bernstein polynomials

被引:10
|
作者
Barrientos, Andres F. [1 ]
Jara, Alejandro [1 ]
Quintana, Fernando A. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Stat, Santiago, Chile
关键词
Simplex; Random Bernstein polynomials; Dirichlet process; Bayesian nonparametrics; CONVERGENCE-RATES; POSTERIOR DISTRIBUTIONS; MIXTURES; LIKELIHOOD;
D O I
10.1016/j.jspi.2015.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Bayesian nonparametric procedure or density estimation for data in a d-dimensional simplex. To this aim, we propose a prior distribution on probability measures based on a modified class of multivariate Bernstein polynomials. The model for the probability distribution corresponds to a mixture of Dirichlet distributions, with random weights and a random number of components. Theoretical properties of the proposal are provided, including posterior consistency and concentration rates of the posterior distribution. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条