Bayesian density estimation for compositional data using random Bernstein polynomials

被引:10
|
作者
Barrientos, Andres F. [1 ]
Jara, Alejandro [1 ]
Quintana, Fernando A. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Stat, Santiago, Chile
关键词
Simplex; Random Bernstein polynomials; Dirichlet process; Bayesian nonparametrics; CONVERGENCE-RATES; POSTERIOR DISTRIBUTIONS; MIXTURES; LIKELIHOOD;
D O I
10.1016/j.jspi.2015.01.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a Bayesian nonparametric procedure or density estimation for data in a d-dimensional simplex. To this aim, we propose a prior distribution on probability measures based on a modified class of multivariate Bernstein polynomials. The model for the probability distribution corresponds to a mixture of Dirichlet distributions, with random weights and a random number of components. Theoretical properties of the proposal are provided, including posterior consistency and concentration rates of the posterior distribution. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 50 条
  • [21] Estimation of the quantile function using Bernstein-Durrmeyer polynomials
    Pepelyshev, A.
    Rafajlowicz, E.
    Steland, A.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (01) : 1 - 20
  • [22] Approximating moments of continuous functions of random variables using Bernstein polynomials
    Khuri, A. I.
    Mukhopadhyay, S.
    Khuri, M. A.
    STATISTICAL METHODOLOGY, 2015, 24 : 37 - 51
  • [23] Density estimation of high dimensional data using ICA and Bayesian networks
    Rouigueb, Abdenebi
    Chitroub, Salim
    Bouridane, Ahmed
    INTELLIGENT DATA ANALYSIS, 2014, 18 (02) : 157 - 179
  • [24] Compositional Bayesian indicator estimation
    Guardiola-Albert, Carolina
    Pardo-Iguzquiza, Eulogio
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2011, 25 (06) : 835 - 849
  • [25] Compositional Bayesian indicator estimation
    Carolina Guardiola-Albert
    Eulogio Pardo-Igúzquiza
    Stochastic Environmental Research and Risk Assessment, 2011, 25 : 835 - 849
  • [26] An alternative distribution function estimation method using rational Bernstein polynomials
    Erdogan, Mahmut Sami
    Disibuyuk, Cetin
    Oruc, Ozlem Ege
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 353 : 232 - 242
  • [27] Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials
    Marcon, G.
    Padoan, S. A.
    Naveau, P.
    Muliere, P.
    Segers, J.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 183 : 1 - 17
  • [28] FAST NONPARAMETRIC MAXIMUM LIKELIHOOD DENSITY DECONVOLUTION USING BERNSTEIN POLYNOMIALS
    Guan, Zhong
    STATISTICA SINICA, 2021, 31 (02) : 891 - 908
  • [29] On the estimation of the Bernoulli regression function using Bernstein polynomials for group observations
    Babilua, Petre
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 335 - 341
  • [30] Efficient and robust density estimation using Bernstein typepolynomials
    Guan, Zhong
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (02) : 250 - 271