Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials

被引:26
|
作者
Marcon, G. [1 ]
Padoan, S. A. [2 ]
Naveau, P. [3 ]
Muliere, P. [2 ]
Segers, J. [4 ]
机构
[1] Univ Pavia, Corso Str Nuova 65, I-27100 Pavia, Italy
[2] Bocconi Univ Milan, Dept Decis Sci, Via Roentgen 1, I-20136 Milan, Italy
[3] Lab Sci Climat & Environm, Gif Sur Yvette, France
[4] Catholic Univ Louvain, Inst Stat Biostat & Sci Actuarielles, Voie Roman Pays 20, B-1348 Louvain La Neuve, Belgium
关键词
Bernstein polynomials; Extremal dependence; Extreme-value copula; Heavy rainfall; Nonparametric estimation; Multivariate max-stable distribution; Pickands dependence function; PAIRWISE DEPENDENCE; EXTREME; MAXIMA;
D O I
10.1016/j.jspi.2016.10.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many applications in risk analysis require the estimation of the dependence among multivariate maxima, especially in environmental sciences. Such dependence can be described by the Pickands dependence function of the underlying extreme-value copula. Here, a nonparametric estimator is constructed as the sample equivalent of a multivariate extension of the madogram. Shape constraints on the family of Pickands dependence functions are taken into account by means of a representation in terms of Bernstein polynomials. The large-sample theory of the estimator is developed and its finite-sample performance is evaluated with a simulation study. The approach is illustrated with a dataset of weekly maxima of hourly rainfall in France recorded from 1993 to 2011 at various weather stations all over the country. The stations are grouped into clusters of seven stations, where our interest is in the extremal dependence within each cluster. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach
    Alireza Ahmadabadi
    Burcu Hudaverdi Ucer
    [J]. Computational Statistics, 2017, 32 : 1515 - 1532
  • [2] Bivariate nonparametric estimation of the Pickands dependence function using Bernstein copula with kernel regression approach
    Ahmadabadi, Alireza
    Ucer, Burcu Hudaverdi
    [J]. COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1515 - 1532
  • [3] Approximation of multivariate function by using new multivariate Bernstein α-polynomials
    Hou, ZE
    Zhang, KC
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (02) : 335 - 345
  • [4] Semi-nonparametric estimation with Bernstein polynomials
    Chak, PM
    Madras, N
    Smith, B
    [J]. ECONOMICS LETTERS, 2005, 89 (02) : 153 - 156
  • [5] Bayesian estimation of bivariate Pickands dependence function
    Ahmadabadi, Alireza
    Gholami, Gholamhossien
    Hudaverdi, Burcu
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (06): : 1723 - 1735
  • [6] LOCAL ROBUST ESTIMATION OF THE PICKANDS DEPENDENCE FUNCTION
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    [J]. ANNALS OF STATISTICS, 2018, 46 (06): : 2806 - 2843
  • [7] Nonparametric estimation of the dependence function for a multivariate extreme value distribution
    Zhang, Dabao
    Wells, Martin T.
    Peng, Liang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (04) : 577 - 588
  • [8] Nonparametric regression estimation by Bernstein-Durrmeyer polynomials
    Rafajlowicz, E
    Ewa, SR
    [J]. TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 17, 1998, : 227 - 239
  • [9] Nonparametric bivariate distribution estimation using Bernstein polynomials under right censoring
    Dib, K.
    Bouezmarni, T.
    Belalia, M.
    Kitouni, A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (23) : 5574 - 5584
  • [10] Estimation of the quantile function using Bernstein-Durrmeyer polynomials
    Pepelyshev, A.
    Rafajlowicz, E.
    Steland, A.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (01) : 1 - 20