Approximation of random functions by stochastic Bernstein polynomials in capacity spaces

被引:1
|
作者
Gal, Sorin G. [1 ]
Niculescu, Constantin P. [2 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Univ 1, Oradea 410087, Romania
[2] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Choquet integral; submodular rapacity; random Bernstein polynomials; approximation in Choquet p-mean; approximation in capacity; Choquet L-p-modulus of continuity; CONVERGENCE; OPERATORS; UNIFORM;
D O I
10.37193/CJM.2021.02.04
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a submodular capacity space, we firstly obtain a quantitative estimate for the uniform convergence in the Choquet p-mean, 1 <= p < infinity, of the multivariate stochastic Bernstein polynomials associated to a random function. Also, quantitative estimates concerning the uniform convergence in capacity in the univariate case are given.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条