Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II

被引:31
|
作者
Epstein, Charles L. [1 ,2 ]
Greengard, Leslie [3 ]
O'Neil, Michael [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/cpa.21420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a new integral representation for the solution of the time harmonic Maxwell equations in media with piecewise constant dielectric permittivity and magnetic permeability in R-3. This representation leads to a coupled system of Fredholm integral equations of the second kind for four scalar densities supported on the material interface. Like the classical Muller equation, it has no spurious resonances. Unlike the classical approach, however, the representation does not suffer from low-frequency breakdown. We illustrate the performance of the method with numerical examples. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:753 / 789
页数:37
相关论文
共 50 条
  • [41] AN EXACT NUMERICAL-SOLUTION TO MAXWELL EQUATIONS FOR LIGHTGUIDES
    PETERSON, GE
    CARNEVALE, A
    PAEK, UC
    BERREMAN, DW
    BELL SYSTEM TECHNICAL JOURNAL, 1980, 59 (07): : 1175 - 1196
  • [42] NEW METHOD FOR NUMERICAL-SOLUTION OF MAXWELL EQUATIONS
    LIAO, C
    ZHAO, YS
    LIN, WG
    ELECTRONICS LETTERS, 1995, 31 (04) : 261 - 262
  • [43] Numerical solution to Maxwell's equations in singular waveguides
    Assous, Franck
    Ciarlet, Patrick, Jr.
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 235 - +
  • [44] Operator splittings for the numerical solution of the Maxwell's equations
    Horváth, R
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 363 - 371
  • [45] Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations
    Gopalakrishnan, J
    Pasciak, JE
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 1 - 15
  • [46] Time-harmonic Maxwell equations with asymptotically linear polarization
    Dongdong Qin
    Xianhua Tang
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [47] Time-harmonic Maxwell equations with asymptotically linear polarization
    Qin, Dongdong
    Tang, Xianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [48] Time-Harmonic Maxwell’s Equations in Periodic Waveguides
    A. Kirsch
    B. Schweizer
    Archive for Rational Mechanics and Analysis, 2025, 249 (3)
  • [49] COMPUTATIONAL HOMOGENIZATION OF TIME-HARMONIC MAXWELL'S EQUATIONS
    Henning, Patrick
    Persson, Anna
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (03): : B581 - B607
  • [50] Heterogeneous time-harmonic Maxwell equations in bidimensional domains
    Rodríguez, AA
    APPLIED MATHEMATICS LETTERS, 2001, 14 (06) : 753 - 758