Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II

被引:31
|
作者
Epstein, Charles L. [1 ,2 ]
Greengard, Leslie [3 ]
O'Neil, Michael [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/cpa.21420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a new integral representation for the solution of the time harmonic Maxwell equations in media with piecewise constant dielectric permittivity and magnetic permeability in R-3. This representation leads to a coupled system of Fredholm integral equations of the second kind for four scalar densities supported on the material interface. Like the classical Muller equation, it has no spurious resonances. Unlike the classical approach, however, the representation does not suffer from low-frequency breakdown. We illustrate the performance of the method with numerical examples. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:753 / 789
页数:37
相关论文
共 50 条
  • [21] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Beck, R
    Hiptmair, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (07) : 901 - 920
  • [22] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Konrad-Zuse-Zentrum Berlin, Takustraße 7, D-14195 Berlin, Germany
    不详
    不详
    Int J Numer Methods Eng, 7 (901-920):
  • [23] A Numerical Solution for the Time Variant Maxwell Equations using a Discontinuous Galerkin Method
    Fuentes, Juan G.
    Valdez, Sergio I.
    Botello, Salvador
    INTERNATIONAL JOURNAL OF COMBINATORIAL OPTIMIZATION PROBLEMS AND INFORMATICS, 2018, 9 (01): : 23 - 34
  • [24] MAXWELL EQUATIONS IN THE DEBYE POTENTIAL FORMALISM
    FAYOS, F
    LLANTA, E
    LLOSA, J
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 43 (02): : 195 - 209
  • [25] On the time integration of Maxwell's equations associated with Debye relaxation processes
    Young, Jeffrey L.
    Adams, Ryan S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (08) : 2409 - 2412
  • [26] Nonlinear time-harmonic Maxwell equations in domains
    Bartsch, Thomas
    Mederski, Jarosaw
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 959 - 986
  • [27] Nonlinear time-harmonic Maxwell equations in domains
    Thomas Bartsch
    Jarosław Mederski
    Journal of Fixed Point Theory and Applications, 2017, 19 : 959 - 986
  • [28] Analysis of a multigrid algorithm for time harmonic Maxwell equations
    Gopalakrishnan, J
    Pasciak, JE
    Demkowicz, LF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (01) : 90 - 108
  • [29] ON QUANTITATIVE RUNGE APPROXIMATION FOR THE TIME HARMONIC MAXWELL EQUATIONS
    Pohjola, Valter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) : 5727 - 5751
  • [30] Finite elements for the time harmonic Maxwell's equations
    Boffi, D
    COMPUTATIONAL ELECTROMAGNETICS, 2003, 28 : 11 - +