Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II

被引:31
|
作者
Epstein, Charles L. [1 ,2 ]
Greengard, Leslie [3 ]
O'Neil, Michael [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/cpa.21420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a new integral representation for the solution of the time harmonic Maxwell equations in media with piecewise constant dielectric permittivity and magnetic permeability in R-3. This representation leads to a coupled system of Fredholm integral equations of the second kind for four scalar densities supported on the material interface. Like the classical Muller equation, it has no spurious resonances. Unlike the classical approach, however, the representation does not suffer from low-frequency breakdown. We illustrate the performance of the method with numerical examples. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:753 / 789
页数:37
相关论文
共 50 条
  • [31] Numerical Simulation of Potential Maxwell's Equations in the Harmonic Regime
    Gonzalez Montesinos, Maria Teresa
    Ortegon Gallego, Francisco
    INTERDISCIPLINARY TOPICS IN APPLIED MATHEMATICS, MODELING AND COMPUTATIONAL SCIENCE, 2015, 117 : 227 - 233
  • [32] The Symmetries and the General Harmonic Solution to Equations of Maxwell Electrodynamics with an Axion
    O. V. Kechkin
    P. A. Mosharev
    Moscow University Physics Bulletin, 2020, 75 : 192 - 197
  • [33] The Symmetries and the General Harmonic Solution to Equations of Maxwell Electrodynamics with an Axion
    Kechkin, O., V
    Mosharev, P. A.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2020, 75 (03) : 192 - 197
  • [34] NUMERICAL-SOLUTION OF MAXWELL EQUATIONS IN THE TIME DOMAIN USING IRREGULAR NONORTHOGONAL GRIDS
    MADSEN, NK
    ZIOLKOWSKI, RW
    WAVE MOTION, 1988, 10 (06) : 583 - 596
  • [35] Numerical solution of the time-dependent Maxwell's equations for random dielectric media
    Harshawardhan, W
    Su, Q
    Grobe, R
    PHYSICAL REVIEW E, 2000, 62 (06): : 8705 - 8712
  • [36] Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations
    Huang, Z. X.
    Wu, X. L.
    Sha, Wei E. I.
    Chen, M. S.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (03) : 545 - 547
  • [37] Numerical solution to Maxwell's equations in singular waveguides
    Assous, Franck
    IMECS 2007: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2007, : 2366 - 2371
  • [38] Numerical solution of the Maxwell equations in time-varying media using Magnus expansion
    Farago, Istvan
    Havasi, Agnes
    Horvath, Robert
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (01): : 137 - 149
  • [39] SOLUTION OF MAXWELL EQUATIONS IN TIME-DOMAIN
    GRANDO, J
    FERRIERES, X
    RECHERCHE AEROSPATIALE, 1994, (06): : 379 - 398
  • [40] Numerical solution techniques to the time-dependent Maxwell equations for highly scattering media
    Mandel, S
    Menon, S
    Harshawardhan, W
    Su, Q
    Grobe, R
    PHOTON MIGRATION, OPTICAL COHERENCE TOMOGRAPHY, AND MICROSCOPY, 2001, 4431 : 165 - 168