Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II

被引:31
|
作者
Epstein, Charles L. [1 ,2 ]
Greengard, Leslie [3 ]
O'Neil, Michael [3 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Courant Inst, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
D O I
10.1002/cpa.21420
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a new integral representation for the solution of the time harmonic Maxwell equations in media with piecewise constant dielectric permittivity and magnetic permeability in R-3. This representation leads to a coupled system of Fredholm integral equations of the second kind for four scalar densities supported on the material interface. Like the classical Muller equation, it has no spurious resonances. Unlike the classical approach, however, the representation does not suffer from low-frequency breakdown. We illustrate the performance of the method with numerical examples. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:753 / 789
页数:37
相关论文
共 50 条
  • [1] Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations
    Epstein, Charles L.
    Greengard, Leslie
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (04) : 413 - 463
  • [2] Parallel Numerical Solution of the Time-Harmonic Maxwell Equations
    Li, Dan
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 224 - 229
  • [3] Parallel numerical solution of the time-harmonic Maxwell equations in mixed form
    Li, Dan
    Greif, Chen
    Schoetzau, Dominik
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (03) : 525 - 539
  • [4] A Numerical Method for the Solution of Time-Harmonic Maxwell Equations for Two-Dimensional Scatterers
    Pisarenco, Maxim
    Maubach, Joseph
    Setija, Irwan
    Mattheij, Robert
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2049 - +
  • [5] NUMERICAL-SOLUTION OF MAXWELL EQUATIONS IN THE TIME DOMAIN
    ORISTAGLIO, ML
    HOHMANN, GH
    GEOPHYSICS, 1983, 48 (04) : 464 - 464
  • [6] On the solution of time-harmonic scattering problems for Maxwell's equations
    Hazard, C
    Lenoir, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) : 1597 - 1630
  • [7] Modeling optical properties of liquid-crystal devices by numerical solution of time-harmonic Maxwell equations
    Amarasinghe, ND
    Gartland, EC
    Kelly, JR
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (07) : 1344 - 1361
  • [8] Domain decomposition methods for time-harmonic Maxwell equations:: Numerical results
    Rodríguez, AA
    Valli, A
    RECENT DEVELOPMENTS IN DOMAIN DECOMPOSITION METHODS, 2002, 23 : 157 - 171
  • [9] Ground state solution of weakly coupled time-harmonic Maxwell equations
    Yanyun Wen
    Peihao Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [10] Ground state solution of weakly coupled time-harmonic Maxwell equations
    Wen, Yanyun
    Zhao, Peihao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (03):