The molecular language of membraneless organelles

被引:459
|
作者
Gomes, Edward [1 ]
Shorter, James [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
subcellular organelle; organelle; amyotrophic lateral sclerosis (ALS) (Lou Gehrig disease); RNA binding protein; chaperone; Cajal body; disaggregase; liquid-liquid phase separation; nucleolus; stress granule; PRION-LIKE DOMAINS; AMYOTROPHIC-LATERAL-SCLEROSIS; LIQUID PHASE-SEPARATION; INTRINSICALLY DISORDERED PROTEINS; RNA-BINDING PROTEINS; NUCLEAR IMPORT RECEPTOR; LOW-COMPLEXITY DOMAINS; CELL-FREE FORMATION; N-TERMINAL DOMAIN; POLYMERASE-II;
D O I
10.1074/jbc.TM118.001192
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.
引用
收藏
页码:7115 / 7127
页数:13
相关论文
共 50 条
  • [41] The Endoplasmic Reticulum Regulates Membraneless Organelles through Contact Sites
    Lee, Shoken
    Bahmanyar, Shirin
    [J]. BIOCHEMISTRY, 2020, 59 (18) : 1716 - 1717
  • [42] Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles
    Palmiero, Umberto Capasso
    Paganini, Carolina
    Kopp, Marie R. G.
    Linsenmeier, Miriam
    Kuffner, Andreas M.
    Arosio, Paolo
    [J]. ADVANCED MATERIALS, 2022, 34 (04)
  • [43] Quantitative photoconversion analysis of internal molecular dynamics in stress granules and other membraneless organelles in live cells
    Amen, Triana
    Kaganovich, Daniel
    [J]. STAR PROTOCOLS, 2020, 1 (03):
  • [44] Membraneless Organelles and Condensates Orchestrate Innate Immunity Against Viruses
    Boccaccio, Graciela Lidia
    Thomas, Maria Gabriela
    Garcia, Cybele Carina
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (16)
  • [45] Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles
    Liu, Jianhui
    Zhorabek, Fariza
    Chau, Ying
    [J]. ACS MACRO LETTERS, 2022, 11 (04) : 562 - 567
  • [46] Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles
    Liu, Jianhui
    Zhorabek, Fariza
    Zhang, Tianfu
    Lam, Jacky W. Y.
    Tang, Ben Zhong
    Chau, Ying
    [J]. SMALL, 2022, 18 (25)
  • [47] Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles
    Lin, Yi-Hsuan
    Forman-Kay, Julie D.
    Chan, Hue Sun
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (17)
  • [48] Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles
    Lee, Jason E.
    Cathey, Peter I.
    Wu, Haoxi
    Parker, Roy
    Voeltz, Gia K.
    [J]. SCIENCE, 2020, 367 (6477) : 527 - +
  • [49] Assembling membraneless organelles from de novo designed proteins
    Hilditch, Alexander T.
    Romanyuk, Andrey
    Cross, Stephen J.
    Obexer, Richard
    McManus, Jennifer J.
    Woolfson, Derek N.
    [J]. NATURE CHEMISTRY, 2024, 16 (01) : 89 - +
  • [50] Mieap forms membraneless organelles to compartmentalize and facilitate cardiolipin metabolism
    Ikari, Naoki
    Nakamura, Yasuyuki
    Arakawa, Hirofumi
    [J]. CANCER SCIENCE, 2022, 113 : 680 - 680