Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles

被引:20
|
作者
Palmiero, Umberto Capasso [1 ]
Paganini, Carolina [1 ]
Kopp, Marie R. G. [1 ]
Linsenmeier, Miriam [1 ]
Kuffner, Andreas M. [1 ]
Arosio, Paolo [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Inst Chem & Bioengn, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
biomolecular condensates; bioseparation; cellular compartmentalization; programmable droplets; responsive polymers; simple coacervates; zwitterionic polymers; PHASE-SEPARATION; COACERVATION; BEHAVIOR;
D O I
10.1002/adma.202104837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing evidence indicates that cells can regulate biochemical functions in time and space by generating membraneless compartments with well-defined mesoscopic properties. One important mechanism underlying this control is simple coacervation driven by associative disordered proteins that encode multivalent interactions. Inspired by these observations, programmable droplets based on simple coacervation of responsive synthetic polymers that mimic the "stickers-and-spacers" architecture of biological disordered proteins are developed. Zwitterionic polymers that undergo an enthalpy-driven liquid-liquid phase separation process and form liquid droplets that remarkably exclude most molecules are developed. Starting from this reference material, different functional groups in the zwitterionic polymer are progressively added to encode an increasing number of different intermolecular interactions. This strategy allowed the multiple emerging properties of the droplets to be controlled independently, such as stimulus-responsiveness, polarity, selective uptake of client molecules, fusion times, and miscibility. By exploiting this high programmability, a model of cellular compartmentalization is reproduced and droplets capable of confining different molecules in space without physical barriers are generated. Moreover, these biomolecular sorters are demonstrated to be able to localize, separate, and enable the detection of target molecules even within complex mixtures, opening attractive applications in bioseparation, and diagnostics.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Active coacervate droplets as a model for membraneless organelles and protocells
    Donau, Carsten
    Spaeth, Fabian
    Sosson, Marilyne
    Kriebisch, Brigitte A. K.
    Schnitter, Fabian
    Tena-Solsona, Marta
    Kang, Hyun-Seo
    Salibi, Elia
    Sattler, Michael
    Mutschler, Hannes
    Boekhoven, Job
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] Active coacervate droplets as a model for membraneless organelles and protocells
    Carsten Donau
    Fabian Späth
    Marilyne Sosson
    Brigitte A. K. Kriebisch
    Fabian Schnitter
    Marta Tena-Solsona
    Hyun-Seo Kang
    Elia Salibi
    Michael Sattler
    Hannes Mutschler
    Job Boekhoven
    [J]. Nature Communications, 11
  • [3] Virus Induced Membraneless Organelles and Biomolecular Condensates
    Mouland, Andrew J.
    Parent, Leslie
    Weber, Stephanie C.
    Holehouse, Alex S.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (16)
  • [4] Splicing regulation through biomolecular condensates and membraneless organelles
    Giudice, Jimena
    Jiang, Hao
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2024, 25 (09) : 683 - 700
  • [5] Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets
    Linsenmeier, Miriam
    Kopp, Marie R. G.
    Grigolato, Fulvio
    Liu, Dany
    Zuercher, Dominik
    Hondele, Maria
    Weis, Karsten
    Palmiero, Umberto Capasso
    Arosio, Paolo
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (41) : 14489 - 14494
  • [6] Multiphase model membraneless organelles
    Shuqi Wu
    Liangfei Tian
    [J]. Nature Chemistry, 2022, 14 : 1095 - 1097
  • [7] Rigidity Rules in DNA Droplets: Nucleic Acid Flexibility Affects Model Membraneless Organelles
    Andre, Alain A. M.
    Spruijt, Evan
    [J]. BIOPHYSICAL JOURNAL, 2018, 115 (10) : 1837 - 1839
  • [8] COACERVATES Multiphase model membraneless organelles
    Wu, Shuqi
    Tian, Liangfei
    [J]. NATURE CHEMISTRY, 2022, 14 (10) : 1095 - 1097
  • [9] Lipid sponge droplets as programmable synthetic organelles
    Bhattacharya, Ahanjit
    Niederholtmeyer, Henrike
    Podolsky, Kira A.
    Bhattacharya, Rupak
    Song, Jing-Jin
    Brea, Roberto J.
    Tsai, Chu-Hsien
    Sinha, Sunil K.
    Devaraj, Neal K.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) : 18206 - 18215
  • [10] Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters
    Nott, Timothy J.
    Craggs, Timothy D.
    Baldwin, Andrew J.
    [J]. NATURE CHEMISTRY, 2016, 8 (06) : 570 - 576