Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles

被引:190
|
作者
Lin, Yi-Hsuan [1 ,2 ]
Forman-Kay, Julie D. [1 ,2 ]
Chan, Hue Sun [1 ,3 ]
机构
[1] Univ Toronto, Dept Biochem, 1 Kings Coll Circle, Toronto, ON M5S 1A8, Canada
[2] Hosp Sick Children, Mol Struct & Funct Program, 686 Bay St, Toronto, ON M5G 0A4, Canada
[3] Univ Toronto, Dept Mol Genet, 1 Kings Coll Circle, Toronto, ON M5S 1A8, Canada
基金
加拿大健康研究院;
关键词
INTRINSICALLY DISORDERED PROTEINS; CHARGED POLYELECTROLYTES; BEHAVIOR; APPROXIMATION; TRANSITIONS; GRANULES; DROPLETS; BIOLOGY; BINDING;
D O I
10.1103/PhysRevLett.117.178101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Liquid-liquid phase separation of charge- and/or aromatic-enriched intrinsically disordered proteins (IDPs) is critical in the biological function of membraneless organelles. Much of the physics of this recent discovery remains to be elucidated. Here, we present a theory in the random phase approximation to account for electrostatic effects in polyampholyte phase separations, yielding predictions consistent with recent experiments on the IDP Ddx4. The theory is applicable to any charge pattern and thus provides a general analytical framework for studying sequence dependence of IDP phase separation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Transport Selectivity of Nuclear Pores, Phase Separation, and Membraneless Organelles
    Schmidt, H. Broder
    Goerlich, Dirk
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2016, 41 (01) : 46 - 61
  • [2] The Role of Polyampholyte Regions of Intrinsically Disordered Proteins in the Formation of Membraneless Organelles
    Fonin, Alexander V.
    Antifeeva, Iuliia A.
    Shpironok, Olesya G.
    Uversky, Vladimir N.
    Kuznetsova, Irina M.
    Turoverov, Konstantin K.
    [J]. BIOPHYSICAL JOURNAL, 2020, 118 (03) : 369A - 369A
  • [3] Engineering membraneless organelles via optical induction of protein phase separation
    Dabdoub, J. B.
    Tong, M.
    Good, M. C.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)
  • [4] Controllable protein phase separation and modular recruitment to form responsive membraneless organelles
    Schuster, Benjamin S.
    Reed, Ellen H.
    Parthasarathy, Ranganath
    Jahnke, Craig N.
    Caldwell, Reese M.
    Bermudez, Jessica G.
    Ramage, Holly
    Good, Matthew C.
    Hammer, Daniel A.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [5] Controllable phase separation and modular recruitment to form synthetic membraneless organelles.
    Schuster, B. S.
    Good, M.
    Hammer, D. A.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [6] Advances in the phase separation-organized membraneless organelles in cells: a narrative review
    Li, Weihan
    Jiang, Chenwei
    Zhang, Erhao
    [J]. TRANSLATIONAL CANCER RESEARCH, 2021, 10 (11) : 4929 - 4946
  • [7] Controllable protein phase separation and modular recruitment to form responsive membraneless organelles
    Benjamin S. Schuster
    Ellen H. Reed
    Ranganath Parthasarathy
    Craig N. Jahnke
    Reese M. Caldwell
    Jessica G. Bermudez
    Holly Ramage
    Matthew C. Good
    Daniel A. Hammer
    [J]. Nature Communications, 9
  • [8] Controllable Protein Phase Separation and Modular Recruitment to Investigate Biochemical Compartmentalization in Membraneless Organelles
    Schuster, Benjamin S.
    Good, Matthew C.
    Hammer, Daniel A.
    [J]. BIOPHYSICAL JOURNAL, 2018, 114 (03) : 80A - 80A
  • [9] Membraneless organelles formed by liquid-liquid phase separation increase bacterial fitness
    Jin, Xin
    Lee, Ji-Eun
    Schaefer, Charley
    Luo, Xinwei
    Wollman, Adam J. M.
    Payne-Dwyer, Alex L.
    Tian, Tian
    Zhang, Xiaowei
    Chen, Xiao
    Li, Yingxing
    McLeish, Tom C. B.
    Leake, Mark C.
    Bai, Fan
    [J]. SCIENCE ADVANCES, 2021, 7 (43)
  • [10] Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates
    Zhao, Yan G.
    Zhang, Hong
    [J]. DEVELOPMENTAL CELL, 2020, 55 (01) : 30 - 44