Equivalent projectors for virtual element methods

被引:427
|
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Brezzi, F. [1 ,2 ,3 ]
Marini, L. D. [3 ,4 ]
Russo, A. [3 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUSS, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; Mimetic finite differences; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS;
D O I
10.1016/j.camwa.2013.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the original virtual element space with degree of accuracy k, projector operators in the H-1-seminorm onto polynomials of degree <= k can be easily computed. On the other hand, projections in the L-2 norm are available only on polynomials of degree <= k - 2 (directly from the degrees of freedom). Here, we present a variant of the virtual element method that allows the exact computations of the L-2 projections on all polynomials of degree <= k. The interest of this construction is illustrated with some simple examples, including the construction of three-dimensional virtual elements, the treatment of lower-order terms, the treatment of the right-hand side, and the L-2 error estimates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 391
页数:16
相关论文
共 50 条
  • [1] Preconditioners with projectors for mixed hybrid finite element methods
    Kuznetsov, Yuri A.
    Kramarenko, Vasily K.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2017, 32 (01) : 39 - 45
  • [2] Bricks for the mixed high-order virtual element method: Projectors and differential operators
    Dassi, F.
    Vacca, G.
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 : 140 - 159
  • [3] Some Estimates for Virtual Element Methods
    Brenner, Susanne C.
    Guan, Qingguang
    Sung, Li-Yeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 553 - 574
  • [4] BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
    da Veiga, L. Beirao
    Brezzi, F.
    Cangiani, A.
    Manzini, G.
    Marini, L. D.
    Russo, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01): : 199 - 214
  • [5] Virtual element methods for the obstacle problem
    Wang, Fei
    Wei, Huayi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 708 - 728
  • [6] Micro-projectors for virtual interfaces
    Lieberman, Klony
    Sharon, Yuval
    Naimi, Eyal
    IDW '06: PROCEEDINGS OF THE 13TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2006, : 1933 - 1934
  • [7] Superconvergent gradient recovery for virtual element methods
    Guo, Hailong
    Xie, Cong
    Zhao, Ren
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (11): : 2007 - 2031
  • [8] BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS
    Brezzi, F.
    Falk, Richard S.
    Marini, L. Donatella
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04): : 1227 - 1240
  • [9] A guide to the finite and virtual element methods for elasticity
    Berbatov, K.
    Lazarov, B. S.
    Jivkov, A. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 169 : 351 - 395
  • [10] Recent results and perspectives for virtual element methods
    da Veiga, L. Beirao
    Bellomo, N.
    Brezzi, F.
    Marini, L. D.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (14): : 2819 - 2824