Preconditioners with projectors for mixed hybrid finite element methods

被引:0
|
作者
Kuznetsov, Yuri A. [1 ]
Kramarenko, Vasily K. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
关键词
Preconditioned conjugate gradient method; preconditioners with projectors; mixed-hybrid finite element method; diffusion equation;
D O I
10.1515/rnam-2017-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and investigate numerically two new preconditioners for the matrices, which arise in the mixed-hybrid finite element methods for diffusion equation in strongly heterogeneous media. Both preconditioners include special projectors on the vector spaces orthogonal to the vectors with constant components. We give general description of the preconditioners and discuss numerical results which demonstrate their efficiency compared to the classical diagonal preconditioner.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [1] Auxiliary Space Preconditioners for Mixed Finite Element Methods
    Tuminaro, Ray S.
    Xu, Jinchao
    Zhu, Yunrong
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 99 - 109
  • [2] MultiGrid Preconditioners for Mixed Finite Element Methods of the Vector Laplacian
    Chen, Long
    Wu, Yongke
    Zhong, Lin
    Zhou, Jie
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 101 - 128
  • [3] MultiGrid Preconditioners for Mixed Finite Element Methods of the Vector Laplacian
    Long Chen
    Yongke Wu
    Lin Zhong
    Jie Zhou
    Journal of Scientific Computing, 2018, 77 : 101 - 128
  • [4] Preconditioners for spectral and mortar finite element methods
    Widlund, OB
    DOMAIN DECOMPOSITION METHODS IN SCIENCES AND ENGINEERING, 1997, : 19 - 32
  • [6] PRECONDITIONERS FOR MIXED FINITE ELEMENT DISCRETIZATIONS OF INCOMPRESSIBLE MHD EQUATIONS
    Wathen, Michael
    Greif, Chen
    Schotzau, Dominik
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A2993 - A3013
  • [7] Mixed finite element methods
    Duran, Ricardo G.
    MIXED FINITE ELEMENTS, COMPATIBILITY CONDITIONS, AND APPLICATIONS, 2008, 1939 : 1 - 44
  • [8] Nodal auxiliary space preconditioners for mixed virtual element methods
    Boon, Wietse M.
    Nilsson, Erik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 363 - 387
  • [9] A coupling of hybrid mixed and continuous Galerkin finite element methods for poroelasticity
    Niu, Chunyan
    Rui, Hongxing
    Sun, Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 767 - 784
  • [10] Interior penalty preconditioners for mixed finite element approximations of elliptic problems
    Rusten, T
    Vassilevski, PS
    Winther, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 447 - 466