Preconditioners with projectors for mixed hybrid finite element methods

被引:0
|
作者
Kuznetsov, Yuri A. [1 ]
Kramarenko, Vasily K. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
关键词
Preconditioned conjugate gradient method; preconditioners with projectors; mixed-hybrid finite element method; diffusion equation;
D O I
10.1515/rnam-2017-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and investigate numerically two new preconditioners for the matrices, which arise in the mixed-hybrid finite element methods for diffusion equation in strongly heterogeneous media. Both preconditioners include special projectors on the vector spaces orthogonal to the vectors with constant components. We give general description of the preconditioners and discuss numerical results which demonstrate their efficiency compared to the classical diagonal preconditioner.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [41] A family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients
    Harder, Christopher
    Paredes, Diego
    Valentin, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 245 : 107 - 130
  • [42] Solution techniques for hybrid mixed finite element models
    Cismasiu, I
    de Almeida, JPM
    Castro, LMS
    Harbis, DC
    INNOVATIVE COMPUTATIONAL METHODS FOR STRUCTURAL MECHANICS, 1999, : 109 - 126
  • [43] A mixed hybrid finite element method for the Helmholtz equation
    Hannukainen, A.
    Huber, M.
    Schoeberl, J.
    JOURNAL OF MODERN OPTICS, 2011, 58 (5-6) : 424 - 437
  • [44] A stabilized hybrid mixed finite element method for poroelasticity
    Niu, Chunyan
    Rui, Hongxing
    Hu, Xiaozhe
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 757 - 774
  • [45] On the hybrid/mixed finite element method with energy constraints
    Shenglin, D.
    Cheung, Y.K.
    Computers and Structures, 1991, 41 (03): : 461 - 474
  • [46] Mixed and hybrid finite element method for the transport equation
    Cartier, J.
    Samba, G.
    NUCLEAR SCIENCE AND ENGINEERING, 2006, 154 (01) : 28 - 47
  • [48] A NEW FORMULATION OF HYBRID MIXED FINITE-ELEMENT
    PIAN, THH
    CHEN, DP
    KANG, D
    COMPUTERS & STRUCTURES, 1983, 16 (1-4) : 81 - 87
  • [49] A stabilized hybrid mixed finite element method for poroelasticity
    Chunyan Niu
    Hongxing Rui
    Xiaozhe Hu
    Computational Geosciences, 2021, 25 : 757 - 774
  • [50] On the coupling of boundary integral and mixed finite element methods
    Meddahi, S
    Valdes, J
    Menendez, O
    Perez, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 69 (01) : 113 - 124