Preconditioners with projectors for mixed hybrid finite element methods

被引:0
|
作者
Kuznetsov, Yuri A. [1 ]
Kramarenko, Vasily K. [2 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
关键词
Preconditioned conjugate gradient method; preconditioners with projectors; mixed-hybrid finite element method; diffusion equation;
D O I
10.1515/rnam-2017-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and investigate numerically two new preconditioners for the matrices, which arise in the mixed-hybrid finite element methods for diffusion equation in strongly heterogeneous media. Both preconditioners include special projectors on the vector spaces orthogonal to the vectors with constant components. We give general description of the preconditioners and discuss numerical results which demonstrate their efficiency compared to the classical diagonal preconditioner.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 50 条
  • [31] Mixed finite element methods for the Oseen problem
    Farhloul, Mohamed
    NUMERICAL ALGORITHMS, 2020, 84 (04) : 1431 - 1442
  • [32] Equivariant preconditioners for boundary element methods
    Tausch, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01): : 90 - 99
  • [33] Connection between finite volume and mixed finite element methods
    Baranger, J
    Maitre, JF
    Oudin, F
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 445 - 465
  • [34] A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods
    Antonietti, Paola F.
    Houston, Paul
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 124 - 149
  • [35] Hybrid finite element methods for the Signorini problem
    Ben Belgacem, F
    Renard, Y
    MATHEMATICS OF COMPUTATION, 2003, 72 (243) : 1117 - 1145
  • [36] A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods
    Paola F. Antonietti
    Paul Houston
    Journal of Scientific Computing, 2011, 46 : 124 - 149
  • [37] Improvements to classical preconditioners in finite element problems
    Almeida, VS
    de Paiva, JB
    FINITE ELEMENTS: TECHNIQUES AND DEVELOPMENTS, 2000, : 43 - 49
  • [38] BLOCK PRECONDITIONERS FOR STABLE MIXED NODAL AND EDGE FINITE ELEMENT REPRESENTATIONS OF INCOMPRESSIBLE RESISTIVE MHD
    Phillips, Edward G.
    Shadid, John N.
    Cyr, Eric C.
    Elman, Howard C.
    Pawlowski, Roger P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : B1009 - B1031
  • [39] HYBRID AND MIXED FINITE-ELEMENT METHODS - ATLURI,SN, GALLAGHER,RH, ZIENKIEWICZ,OC
    NAKAZAWA, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 46 (03) : 353 - 354
  • [40] A HYBRID HDMR FOR MIXED MULTISCALE FINITE ELEMENT METHODS WITH APPLICATION TO FLOWS IN RANDOM POROUS MEDIA
    Jiang, Lijian
    Moulton, J. David
    Wei, Jia
    MULTISCALE MODELING & SIMULATION, 2014, 12 (01): : 119 - 151