Equivalent projectors for virtual element methods

被引:427
|
作者
Ahmad, B. [1 ]
Alsaedi, A. [1 ]
Brezzi, F. [1 ,2 ,3 ]
Marini, L. D. [3 ,4 ]
Russo, A. [3 ,5 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] IUSS, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[5] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; Mimetic finite differences; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS;
D O I
10.1016/j.camwa.2013.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the original virtual element space with degree of accuracy k, projector operators in the H-1-seminorm onto polynomials of degree <= k can be easily computed. On the other hand, projections in the L-2 norm are available only on polynomials of degree <= k - 2 (directly from the degrees of freedom). Here, we present a variant of the virtual element method that allows the exact computations of the L-2 projections on all polynomials of degree <= k. The interest of this construction is illustrated with some simple examples, including the construction of three-dimensional virtual elements, the treatment of lower-order terms, the treatment of the right-hand side, and the L-2 error estimates. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 391
页数:16
相关论文
共 50 条
  • [31] THE USE OF PROJECTORS TO IMPROVE FINITE-ELEMENT PERFORMANCE
    RANKIN, CC
    NOUROMID, B
    COMPUTERS & STRUCTURES, 1988, 30 (1-2) : 257 - 267
  • [32] Mixed virtual element methods for optimal control of Darcy flow
    Tushar, Jai
    Kumar, Anil
    Kumar, Sarvesh
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 140 : 134 - 153
  • [33] SOME ESTIMATES OF VIRTUAL ELEMENT METHODS FOR FOURTH ORDER PROBLEMS
    Guan, Qingguang
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 4099 - 4118
  • [34] Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind
    Fang Feng
    Weimin Han
    Jianguo Huang
    Journal of Scientific Computing, 2019, 80 : 60 - 80
  • [35] H(div) and H(curl)-conforming virtual element methods
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    NUMERISCHE MATHEMATIK, 2016, 133 (02) : 303 - 332
  • [36] Bridging the hybrid high-order and virtual element methods
    Lemaire, Simon
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 549 - 593
  • [37] Virtual Element Methods for Elliptic Variational Inequalities of the Second Kind
    Feng, Fang
    Han, Weimin
    Huang, Jianguo
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (01) : 60 - 80
  • [38] Dual Virtual Element Methods for Discrete Fracture Matrix models
    Fumagalli, Alessio
    Keilegavlen, Eirik
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2019, 74
  • [39] ANISOTROPIC ERROR ESTIMATES OF THE LINEAR NONCONFORMING VIRTUAL ELEMENT METHODS
    Cao, Shuhao
    Chen, Long
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 1058 - 1081
  • [40] Nodal auxiliary space preconditioners for mixed virtual element methods
    Boon, Wietse M.
    Nilsson, Erik
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 363 - 387