Brownian Motion Model With Stochastic Parameters For Asset Prices

被引:0
|
作者
Ching, Soo Huei [1 ]
Hin, Pooi Ah [1 ]
机构
[1] Sunway Univ, Sch Business, Petaling Jaya 46150, Selangor, Malaysia
关键词
Brownian motion model; drift; volatility;
D O I
10.1063/1.4823962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift mu and volatility sigma may change over time. Presently we consider a model in which the parameter x = (mu,sigma) is such that its value x (t + Delta t) at a short time Delta t ahead of the present time t depends on the value of the asset price at time t + Delta t as well as the present parameter value x(t) and m(-1) other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 50 条
  • [1] An 'h-Brownian motion' and the existence of stochastic option prices
    Haven, E
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 344 (1-2) : 152 - 155
  • [2] Asset Pricing Model Based on Fractional Brownian Motion
    Yan, Yu
    Wang, Yiming
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [3] Analysis of a stochastic SIR model with fractional Brownian motion
    Caraballo, Tomas
    Keraani, Sami
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (05) : 895 - 908
  • [4] A stochastic epidemic model with G-Brownian motion
    He, Ping
    Ren, Yong
    Zhang, Defei
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (11) : 3166 - 3169
  • [5] Bayesian estimation of a dynamic stochastic general equilibrium model with asset prices
    Kliem, Martin
    Uhlig, Harald
    QUANTITATIVE ECONOMICS, 2016, 7 (01) : 257 - 287
  • [6] Stochastic calculus for Brownian motion on a Brownian fracture
    Khoshnevisan, D
    Lewis, TM
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (03): : 629 - 667
  • [7] Stochastic Thermodynamics of Brownian Motion
    Nicolis, Gregoire
    De Decker, Yannick
    ENTROPY, 2017, 19 (09):
  • [8] A stochastic parabolic model of MEMS driven by fractional Brownian motion
    Ourania Drosinou
    Christos V. Nikolopoulos
    Anastasios Matzavinos
    Nikos I. Kavallaris
    Journal of Mathematical Biology, 2023, 86
  • [9] Comment: A Brownian Motion Model for Stochastic Simulation With Tunable Precision
    Tuo, Rui
    Qian, Peter Z. G.
    Wu, C. F. Jeff
    TECHNOMETRICS, 2013, 55 (01) : 29 - +
  • [10] A stochastic parabolic model of MEMS driven by fractional Brownian motion
    Drosinou, Ourania
    Nikolopoulos, Christos V.
    Matzavinos, Anastasios
    Kavallaris, Nikos I.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (05)