A Ermakov-Ray-Reid reduction in 2+1-dimensional magnetogasdynamics

被引:0
|
作者
Rogers, Colin [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Univ New South Wales, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sch Math, Sydney, NSW 2052, Australia
关键词
TIME-DEPENDENT SOLUTIONS; SUBSTITUTION PRINCIPLES; NONLINEAR SUPERPOSITION; SIMILARITY SOLUTIONS; SYSTEMS; EQUATIONS; BEAMS; PLASMA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 2+1-dimensional system governing rotating homentropic magnetogasdynamics with a parabolic gas law is shown to admit an elliptic vortex ansatz determined by an eight-dimensional nonlinear dynamical system with underlying integrable Ermakov-Ray-Reid structure. A novel magnetogasdynamic analogue of the pulsrodon of shallow water f-plane theory is isolated thereby.
引用
收藏
页码:164 / 177
页数:14
相关论文
共 50 条
  • [1] Ermakov-Ray-Reid Systems in (2+1)-Dimensional Rotating Shallow Water Theory
    Rogers, Colin
    An, Hongli
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (03) : 275 - 299
  • [2] Ermakov-Ray-Reid systems in nonlinear optics
    Rogers, Colin
    Malomed, Boris
    Chow, Kwok
    An, Hongli
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [3] Ermakov-Ray-Reid systems with additive noise
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 439 : 44 - 47
  • [4] Ermakov-Ray-Reid Reductions of Variational Approximations in Nonlinear Optics
    Rogers, Colin
    Malomed, Boris
    An, Hongli
    STUDIES IN APPLIED MATHEMATICS, 2012, 129 (04) : 389 - 413
  • [5] Additive and multiplicative noises acting simultaneously on Ermakov-Ray-Reid systems
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 267 - 270
  • [6] A 2+1-Dimensional Non-Isothermal Magnetogasdynamic System. Hamiltonian-Ermakov Integrable Reduction
    An, Hongli
    Rogers, Colin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [7] The 2+1-Dimensional Special Relativity
    Lin, De-Hone
    SYMMETRY-BASEL, 2022, 14 (11):
  • [8] ON (2+1)-DIMENSIONAL ERMAKOV SYSTEMS
    ROGERS, C
    HOENSELAERS, C
    RAY, JR
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11): : 2625 - 2633
  • [9] Horizons in 2+1-dimensional collapse of particles
    Dieter Brill
    Puneet Khetarpal
    Vijay Kaul
    Pramana, 2007, 69 : 109 - 118
  • [10] STRING SOURCES IN 2+1-DIMENSIONAL GRAVITY
    DESER, S
    JACKIW, R
    ANNALS OF PHYSICS, 1989, 192 (02) : 352 - 367