A Ermakov-Ray-Reid reduction in 2+1-dimensional magnetogasdynamics

被引:0
|
作者
Rogers, Colin [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Univ New South Wales, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sch Math, Sydney, NSW 2052, Australia
关键词
TIME-DEPENDENT SOLUTIONS; SUBSTITUTION PRINCIPLES; NONLINEAR SUPERPOSITION; SIMILARITY SOLUTIONS; SYSTEMS; EQUATIONS; BEAMS; PLASMA;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 2+1-dimensional system governing rotating homentropic magnetogasdynamics with a parabolic gas law is shown to admit an elliptic vortex ansatz determined by an eight-dimensional nonlinear dynamical system with underlying integrable Ermakov-Ray-Reid structure. A novel magnetogasdynamic analogue of the pulsrodon of shallow water f-plane theory is isolated thereby.
引用
收藏
页码:164 / 177
页数:14
相关论文
共 50 条
  • [21] Exact interior solutions in 2+1-dimensional spacetime
    Rahaman, Farook
    Bhar, Piyali
    Biswas, Ritabrata
    Usmani, A. A.
    EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (04): : 1 - 7
  • [22] Analog dual to a 2+1-dimensional holographic superconductor
    Bilic, Neven
    Fabris, Julio C.
    CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (16)
  • [23] Topology and incompleteness for 2+1-dimensional cosmological spacetimes
    Fajman, David
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (06) : 1157 - 1176
  • [24] LOCAL WELLPOSEDNESS FOR THE 2+1-DIMENSIONAL MONOPOLE EQUATION
    Czubak, Magdalena
    ANALYSIS & PDE, 2010, 3 (02): : 151 - 174
  • [25] NON-TRIVIAL 2+1-DIMENSIONAL GRAVITY
    Grigore, D. R.
    Scharf, G.
    ROMANIAN JOURNAL OF PHYSICS, 2013, 58 (5-6): : 583 - 598
  • [26] 2+1-dimensional gravitational decoupled anisotropic solutions
    Sharif, M.
    Sadiq, Sobia
    CHINESE JOURNAL OF PHYSICS, 2019, 60 : 279 - 289
  • [27] ON A 2+1-DIMENSIONAL DARBOUX SYSTEM - INTEGRABLE REDUCTIONS
    SCHIEF, WK
    INVERSE PROBLEMS, 1994, 10 (05) : 1185 - 1198
  • [28] Decomposition for a 2+1-dimensional discrete integrable model
    Su Ting
    Ma Yun-Ling
    Geng Xian-Guo
    CHINESE PHYSICS LETTERS, 2008, 25 (10) : 3523 - 3526
  • [29] On the integrability of a Hamiltonian reduction of a 2+1-dimensional non-isothermal rotating gas cloud system
    Rogers, C.
    Schief, W. K.
    NONLINEARITY, 2011, 24 (11) : 3165 - 3178
  • [30] Geometric motions of surfaces and 2+1-dimensional integrable equations
    Chou, KS
    Qu, CZ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (04) : 1039 - 1043