Ermakov-Ray-Reid Reductions of Variational Approximations in Nonlinear Optics

被引:27
|
作者
Rogers, Colin [1 ]
Malomed, Boris
An, Hongli
机构
[1] Univ New S Wales, Sch Math, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sydney, NSW 2052, Australia
基金
中国国家自然科学基金;
关键词
GENERALIZED ERMAKOV; SPATIAL SOLITONS; SYSTEMS; BEAMS; SUPERPOSITION; DYNAMICS;
D O I
10.1111/j.1467-9590.2012.00557.x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integrable Hamiltonian systems of Ermakov-Ray-Reid type are shown to arise out of variational approximation to certain modulated NLS models as well as in spiralling elliptic soliton systems and their generalization in a Bose-Einstein setting.
引用
收藏
页码:389 / 413
页数:25
相关论文
共 50 条
  • [1] Ermakov-Ray-Reid systems in nonlinear optics
    Rogers, Colin
    Malomed, Boris
    Chow, Kwok
    An, Hongli
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [2] Ermakov-Ray-Reid systems with additive noise
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 439 : 44 - 47
  • [3] Additive and multiplicative noises acting simultaneously on Ermakov-Ray-Reid systems
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 267 - 270
  • [4] A Ermakov-Ray-Reid reduction in 2+1-dimensional magnetogasdynamics
    Rogers, Colin
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 164 - 177
  • [5] Ermakov-Ray-Reid Systems in (2+1)-Dimensional Rotating Shallow Water Theory
    Rogers, Colin
    An, Hongli
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (03) : 275 - 299
  • [6] ERMAKOV HAMILTONIAN-SYSTEMS IN NONLINEAR OPTICS OF ELLIPTIC GAUSSIAN BEAMS
    GONCHARENKO, AM
    LOGVIN, YA
    SAMSON, AM
    SHAPOVALOV, PS
    TUROVETS, SI
    PHYSICS LETTERS A, 1991, 160 (02) : 138 - 142
  • [7] Variational principles for nonlinear fiber optics
    Zhang, J
    Yu, JY
    Pan, N
    CHAOS SOLITONS & FRACTALS, 2005, 24 (01) : 309 - 311
  • [8] VARIATIONAL APPROXIMATIONS TO THE NONLINEAR SCHRODINGER-EQUATION
    COOPER, F
    SHEPARD, HK
    SIMMONS, LM
    PHYSICS LETTERS A, 1991, 156 (7-8) : 436 - 440
  • [9] Inverse variational problem for nonlinear equation in optics
    Tallukdar, B.
    INDIAN JOURNAL OF PHYSICS, 2006, 80 (05) : 501 - 504
  • [10] A variational approach to nonlinear evolution equations in optics
    D Anderson
    M Lisak
    A Berntson
    Pramana, 2001, 57 : 917 - 936