Ermakov-Ray-Reid systems in nonlinear optics

被引:42
|
作者
Rogers, Colin [1 ,2 ]
Malomed, Boris [3 ]
Chow, Kwok [4 ]
An, Hongli [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Univ New S Wales, Sch Math, Australian Res Council, Ctr Excellence Math & Stat Complex Syst, Sydney, NSW 2052, Australia
[3] Tel Aviv Univ, Iby & Aladar Fleischman Fac Engn, Tel Aviv, Israel
[4] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
关键词
ELLIPTIC GAUSSIAN-BEAM; QUANTUM-MECHANICS; WAVE-EQUATION; SUPERPOSITION; TRANSFORMATIONS; MODES; ORDER;
D O I
10.1088/1751-8113/43/45/455214
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A hydrodynamics-type system incorporating a Madelung-Bohm-type quantum potential, as derived by Wagner et al via Maxwell's equations and the paraxial approximation in nonlinear optics, is reduced to a nonlinear Schrodinger canonical form. A two-parameter nonlinear Ermakov-Ray-Reid system that arises from this model, and which governs the evolution of beam radii in an elliptically polarised medium is shown to be reducible to a classical Posch-lTeller equation. A class of exact solutions to the Ermakov-type system is constructed in terms of elliptic dn functions. It is established that integrable two-component Ermakov-Ray-Reid subsystems likewise arise in a coupled (2+1)dimensional nonlinear optics model descriptive of the two-pulse interaction in a Kerr medium. The Hamiltonian structure of these subsystems allows their complete integration.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ermakov-Ray-Reid Reductions of Variational Approximations in Nonlinear Optics
    Rogers, Colin
    Malomed, Boris
    An, Hongli
    STUDIES IN APPLIED MATHEMATICS, 2012, 129 (04) : 389 - 413
  • [2] Ermakov-Ray-Reid systems with additive noise
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 439 : 44 - 47
  • [3] Additive and multiplicative noises acting simultaneously on Ermakov-Ray-Reid systems
    Cervantes-Lopez, E.
    Espinoza, P. B.
    Gallegos, A.
    Rosu, H. C.
    REVISTA MEXICANA DE FISICA, 2016, 62 (03) : 267 - 270
  • [4] Ermakov-Ray-Reid Systems in (2+1)-Dimensional Rotating Shallow Water Theory
    Rogers, Colin
    An, Hongli
    STUDIES IN APPLIED MATHEMATICS, 2010, 125 (03) : 275 - 299
  • [5] A Ermakov-Ray-Reid reduction in 2+1-dimensional magnetogasdynamics
    Rogers, Colin
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 164 - 177
  • [6] Ermakov-Lewis invariants and Reid systems
    Mancas, Stefan C.
    Rosu, Haret C.
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2113 - 2117
  • [7] Ermakov-Lewis invariants and Reid systems
    Mancas, Stefan C.
    Rosu, Haret C.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378 (30-31): : 2113 - 2117
  • [8] ERMAKOV HAMILTONIAN-SYSTEMS IN NONLINEAR OPTICS OF ELLIPTIC GAUSSIAN BEAMS
    GONCHARENKO, AM
    LOGVIN, YA
    SAMSON, AM
    SHAPOVALOV, PS
    TUROVETS, SI
    PHYSICS LETTERS A, 1991, 160 (02) : 138 - 142
  • [9] GENERALIZED RAY - REID SYSTEMS
    LUTZKY, M
    PHYSICS LETTERS A, 1980, 78 (04) : 301 - 303
  • [10] FURTHER GENERALIZATION OF RAY-REID SYSTEMS
    SARLET, W
    PHYSICS LETTERS A, 1981, 82 (04) : 161 - 164