High Performance Implementations for Computing the Maximal Lyapunov Exponent on Distributed Memory Architectures

被引:0
|
作者
Marin Carrion, I. [1 ]
Arias Antunez, E. [2 ]
Artigao Castillo, M. M. [1 ]
Miralles Canals, J. J. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Appl Phys, Avda Espana S-N, Albacete 02071, Spain
[2] Univ Castilla La Mancha, Comp Syst Dept, E-02071 Albacete, Spain
关键词
Parallel Computing; Message Passing Interface; Physics; Nonlinear Time Series Analysis; maximal Lyapunov exponent; Kantz's method; TIME-SERIES;
D O I
10.1063/1.4772146
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The calculation of maximal Lyapunov exponent is particularly relevant for systems forecasting in different fields of science and engineering (medicine, economy, oceanography, biological systems, etc.). In some of these applications, it is important to give results within a reasonable time scale, so the execution time for finding the maximal Lyapunov exponent has to be reduced. This paper describes two parallel implementations for computing the maximal Lyapunov exponent for distributed memory architectures. The accuracy and performance of the two parallel approaches are assessed and compared to the best sequential implementation for computing the maximal Lyapunov exponent which appears in the TISEAN project.
引用
收藏
页码:1214 / 1217
页数:4
相关论文
共 50 条
  • [1] On the Performance of Parallel Neural Network Implementations on Distributed Memory Architectures
    Ganeshamoorthy, K.
    Ranasinghe, D. N.
    [J]. CCGRID 2008: EIGHTH IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, VOLS 1 AND 2, PROCEEDINGS, 2008, : 90 - 97
  • [2] Switching systems with dwell time: Computing the maximal Lyapunov exponent
    Chitour, Yacine
    Guglielmi, Nicola
    Protasov, Vladimir Yu
    Sigalotti, Mario
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2021, 40
  • [3] Distributed Memory Sparse Inverse Covariance Matrix Estimation on High-Performance Computing Architectures
    Eftekhari, Aryan
    Bollhoefer, Matthias
    Schenk, Olaf
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE, AND ANALYSIS (SC'18), 2018,
  • [4] In-Memory Computing Architectures for Sparse Distributed Memory
    Kang, Mingu
    Shanbhag, Naresh R.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (04) : 855 - 863
  • [5] Algorithm 1033: Parallel Implementations for Computing the Minimum Distance of a Random Linear Code on Distributed-memory Architectures
    Quintana-Orti, Gregorio
    Hernando, Fernando
    Igual, Francisco D.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (01):
  • [6] Compiling High Performance Fortran for distributed-memory architectures
    Benkner, S
    Zima, H
    [J]. PARALLEL COMPUTING, 1999, 25 (13-14) : 1785 - 1825
  • [7] EFFICIENT IMPLEMENTATIONS OF SEARCH-TREES ON PARALLEL DISTRIBUTED MEMORY ARCHITECTURES
    COLBROOK, A
    SMYTHE, C
    [J]. IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1990, 137 (05): : 394 - 400
  • [8] Parallel implementations of the False Nearest Neighbors method for distributed memory architectures
    Marin Carrion, I.
    Arias Antunez, E.
    Artigao Castillo, M. M.
    Miralles Canals, J. J.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2011, 23 (01): : 1 - 16
  • [9] Distributed architectures and implementations of observer based controllers for performance optimization
    Yadav, V
    Voulgaris, PG
    Salapaka, MV
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 4844 - 4849
  • [10] PERFORMANCE MODELING OF DISTRIBUTED MEMORY ARCHITECTURES
    JOHNSSON, SL
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1991, 12 (04) : 300 - 312