High Performance Implementations for Computing the Maximal Lyapunov Exponent on Distributed Memory Architectures

被引:0
|
作者
Marin Carrion, I. [1 ]
Arias Antunez, E. [2 ]
Artigao Castillo, M. M. [1 ]
Miralles Canals, J. J. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Appl Phys, Avda Espana S-N, Albacete 02071, Spain
[2] Univ Castilla La Mancha, Comp Syst Dept, E-02071 Albacete, Spain
关键词
Parallel Computing; Message Passing Interface; Physics; Nonlinear Time Series Analysis; maximal Lyapunov exponent; Kantz's method; TIME-SERIES;
D O I
10.1063/1.4772146
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The calculation of maximal Lyapunov exponent is particularly relevant for systems forecasting in different fields of science and engineering (medicine, economy, oceanography, biological systems, etc.). In some of these applications, it is important to give results within a reasonable time scale, so the execution time for finding the maximal Lyapunov exponent has to be reduced. This paper describes two parallel implementations for computing the maximal Lyapunov exponent for distributed memory architectures. The accuracy and performance of the two parallel approaches are assessed and compared to the best sequential implementation for computing the maximal Lyapunov exponent which appears in the TISEAN project.
引用
收藏
页码:1214 / 1217
页数:4
相关论文
共 50 条
  • [31] High-Performance Computing System Architectures: Design and Performance
    Bagherzadeh, Nader
    Sarbazi-Azad, Hamid
    [J]. IET COMPUTERS AND DIGITAL TECHNIQUES, 2012, 6 (05): : 257 - 258
  • [32] A high performance distributed memory & computing algorithm for face recognition via conformal mapping
    Megherbi, DB
    Boulenouar, AJ
    Rajagopalan, V
    [J]. VISUAL INFORMATION PROCESSING X, 2001, 4388 : 246 - 257
  • [33] Trends in Architectures and Methods for High Performance Computing Simulation
    Resch, M. M.
    [J]. PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, 21 : 37 - 48
  • [34] Configurable computing: The catalyst for high-performance architectures
    Ebeling, C
    Cronquist, DC
    Franklin, P
    [J]. IEEE INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, PROCEEDINGS, 1997, : 364 - 372
  • [35] Middleware in modern high performance computing system architectures
    Engelmann, Christian
    Ong, Hong
    Scott, Stephen L.
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 784 - +
  • [36] High-Performance Computing Applications on Novel Architectures
    Kindratenko, Volodymyr
    Thiruvathukal, George K.
    Gottlieb, Steven
    [J]. COMPUTING IN SCIENCE & ENGINEERING, 2008, 10 (06) : 13 - 15
  • [37] Metalanguage for High-Performance Computing on Hybrid Architectures
    Gradvohl, A. L. S.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (06) : 1162 - 1168
  • [38] DISK SYSTEM ARCHITECTURES FOR HIGH-PERFORMANCE COMPUTING
    KATZ, RH
    GIBSON, GA
    PATTERSON, DA
    [J]. PROCEEDINGS OF THE IEEE, 1989, 77 (12) : 1842 - 1858
  • [39] A high-level programming environment for distributed memory architectures
    Giloi, WK
    Pohl, HW
    Schramm, A
    [J]. PARALLEL COMPUTING TECHNOLOGIES, 1999, 1662 : 217 - 222
  • [40] Generating High-Performance Number Theoretic Transform Implementations for Vector Architectures
    Zhang, Naifeng
    Ebel, Austin
    Neda, Negar
    Brinich, Patrick
    Reynwar, Benedict
    Schmidt, Andrew G.
    Franusich, Mike
    Johnson, Jeremy
    Reagen, Brandon
    Franchetti, Franz
    [J]. 2023 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE, HPEC, 2023,