ON THE CAUCHY PROBLEM FOR THE TWO-COMPONENT DULLIN-GOTTWALD-HOLM SYSTEM

被引:17
|
作者
Chen, Yong [1 ,2 ]
Gao, Hongjun [1 ,3 ]
Liu, Yue [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
[4] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Two-component Dullin-Gottwald-Holm system; regularization; wave-breaking; global solutions; solitary-wave solutions; GLOBAL WELL-POSEDNESS; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; BREAKING WAVES; WEAK SOLUTIONS; EXISTENCE; KDV;
D O I
10.3934/dcds.2013.33.3407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is the initial-value problem for a two-component Dullin-Gottwald-Holm system. The local well-posedness in the Sobolev space H-s(R) with s > 3/2 is established by using the bi-linear estimate technique to the approximate solutions. Then the wave-breaking criteria and global solutions are determined in H-s(R), s > 3/2. Finally, existence of the solitary-wave solutions is demonstrated.
引用
收藏
页码:3407 / 3441
页数:35
相关论文
共 50 条
  • [41] Symmetry Reductions for a Generalized Dullin-Gottwald-Holm equation
    Bruzon, M. S.
    Gandarias, M. L.
    Camacho, J. C.
    Ramirez, J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1365 - 1368
  • [42] Dullin-Gottwald-Holm方程的散射逼近
    居琳
    田立新
    江苏科技大学学报(自然科学版), 2010, 24 (03) : 302 - 304
  • [43] Stability of singular waves for Dullin-Gottwald-Holm equation
    Gao, Yuetian
    Chen, Jianze
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [44] On the Cauchy problem for the two-component Camassa-Holm system
    Gui, Guilong
    Liu, Yue
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 45 - 66
  • [45] Optimal Control Problem with Necessary Optimality Conditions for the Viscous Dullin-Gottwald-Holm Equation
    Hwang, Jinsoo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [46] New exact periodic wave solutions for the Dullin-Gottwald-Holm equation
    Meng, Qing
    He, Bin
    Long, Yao
    Li, Zhenyang
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (08) : 4533 - 4537
  • [47] EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS FOR THE DULLIN-GOTTWALD-HOLM EQUATION
    Yu, Weiqin
    Li, Na
    Chen, Fangqi
    Zhao, Shouwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 968 - 980
  • [48] Peakon-antipeakon interaction in the Dullin-Gottwald-Holm equation
    Zhou, Jiangbo
    Tian, Lixin
    Zhang, Wenbin
    Kumar, Sunil
    PHYSICS LETTERS A, 2013, 377 (18) : 1233 - 1238
  • [49] On Solitary Waves and Wave-Breaking Phenomena for a Generalized Two-Component Integrable Dullin–Gottwald–Holm System
    Yanwu Han
    Fei Guo
    Hongjun Gao
    Journal of Nonlinear Science, 2013, 23 : 617 - 656
  • [50] Global Dissipative Solution for an Extended Dullin-Gottwald-Holm Equation
    Wang, Yan
    Yan, Yongsheng
    Wu, Rui
    JOURNAL OF MATHEMATICS, 2022, 2022