ON THE CAUCHY PROBLEM FOR THE TWO-COMPONENT DULLIN-GOTTWALD-HOLM SYSTEM

被引:17
|
作者
Chen, Yong [1 ,2 ]
Gao, Hongjun [1 ,3 ]
Liu, Yue [4 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Peoples R China
[3] Nanjing Normal Univ, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
[4] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
美国国家科学基金会;
关键词
Two-component Dullin-Gottwald-Holm system; regularization; wave-breaking; global solutions; solitary-wave solutions; GLOBAL WELL-POSEDNESS; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; BREAKING WAVES; WEAK SOLUTIONS; EXISTENCE; KDV;
D O I
10.3934/dcds.2013.33.3407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is the initial-value problem for a two-component Dullin-Gottwald-Holm system. The local well-posedness in the Sobolev space H-s(R) with s > 3/2 is established by using the bi-linear estimate technique to the approximate solutions. Then the wave-breaking criteria and global solutions are determined in H-s(R), s > 3/2. Finally, existence of the solitary-wave solutions is demonstrated.
引用
收藏
页码:3407 / 3441
页数:35
相关论文
共 50 条