Algorithm to compute abelian subalgebras and ideals in Malcev algebras

被引:1
|
作者
Ceballos, M. [1 ]
Nunez, J. [1 ]
Tenorio, A. F. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Geometria & Topol, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Pablo de Olavide, Escuela Politecn Super, Dept Econ Metodos Cuantitat & Hist Econ, Ctra Utrera Km 1, Seville 41013, Spain
关键词
Malcev algebra; abelian subalgebra; abelian ideal; invariant; algorithm; DIMENSION;
D O I
10.1002/mma.3940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4892 / 4900
页数:9
相关论文
共 50 条
  • [1] Algorithmic procedure to compute abelian subalgebras and ideals of maximal dimension of Leibniz algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (09) : 1838 - 1854
  • [2] An Algorithm to Compute Abelian Subalgebras in Linear Algebras of Upper-Triangular Matrices
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 53 - +
  • [3] On 3-Lie algebras with abelian ideals and subalgebras
    Bai, RuiPu
    Zhang, Lihong
    Wu, Yong
    Li, Zhenheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2072 - 2082
  • [4] Abelian subalgebras and ideals of maximal dimension in Poisson algebras
    Ouaridi, A. Fernandez
    Navarro, R. M.
    Towers, D. A.
    JOURNAL OF ALGEBRA, 2024, 660 : 680 - 704
  • [5] Abelian subalgebras and ideals of maximal dimension in Zinbiel algebras
    Ceballos, Manuel
    Towers, David A.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) : 1323 - 1333
  • [6] An Algorithm to Compute the H-Bases for Ideals of Subalgebras
    Rabia
    Binyamin, Muhammad Ahsan
    Jabeen, Nazia
    Aslam, Adnan
    Anoh Yannick, Kraidi
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [7] On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras
    Ceballos, Manuel
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 497 - 503
  • [8] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
    Manuel Ceballos
    David A. Towers
    Mediterranean Journal of Mathematics, 2023, 20
  • [9] Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras
    Ceballos, Manuel
    Towers, David A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (02)
  • [10] Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (10) : 1388 - 1411