A counterexample to the Fredholm alternative for the p-Laplacian

被引:16
|
作者
Drábek, P
Takác, P
机构
[1] Univ W Bohemia, Dept Math, CZ-30614 Plzen, Czech Republic
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
nonuniqueness and multiplicity of solutions; resonance for the p-Laplacian; nonlinear Fredholm alternative;
D O I
10.1090/S0002-9939-99-05195-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following nonhomogeneous Dirichlet boundary value problem for the one-dimensional p-Laplacian with 1 < p < infinity is considered: (*) -(\u'\(p-2)u')' - lambda\u\(p-2)u = f(x) for 0 < x < T; u(0) = u(T) = 0; where f = 1 + h with h is an element of L infinity(0, T) small enough. Solvability properties of Problem (*) with respect to the spectral parameter lambda is an element of R are investigated. We focus our attention on some fundamental differences between the cases p not equal 2 and p = 2. For p not equal 2 we give a counterexample to the classical Fredholm alternative (which is valid for the linear case p = 2).
引用
收藏
页码:1079 / 1087
页数:9
相关论文
共 50 条
  • [21] Ground state alternative for p-Laplacian with potential term
    Yehuda Pinchover
    Kyril Tintarev
    Calculus of Variations and Partial Differential Equations, 2007, 28 : 179 - 201
  • [22] Ground state alternative for p-Laplacian with potential term
    Pinchover, Yehuda
    Tintarev, Kyril
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 28 (02) : 179 - 201
  • [23] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [24] Variations on the p-Laplacian
    Kawohl, Bernd
    NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, 2011, 540 : 35 - 46
  • [25] On the eigenvectors of p-Laplacian
    Luo, Dijun
    Huang, Heng
    Ding, Chris
    Nie, Feiping
    MACHINE LEARNING, 2010, 81 (01) : 37 - 51
  • [26] Bounce on a p-Laplacian
    Mugnai, D
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (03) : 371 - 379
  • [27] On the eigenvectors of p-Laplacian
    Dijun Luo
    Heng Huang
    Chris Ding
    Feiping Nie
    Machine Learning, 2010, 81 : 37 - 51
  • [28] The range of the p-Laplacian
    Binding, PA
    Drabek, P
    Huang, YX
    APPLIED MATHEMATICS LETTERS, 1997, 10 (06) : 77 - 82
  • [29] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354
  • [30] Existence problems for the p-Laplacian
    Edward, Julian
    Hudson, Steve
    Leckband, Mark
    FORUM MATHEMATICUM, 2015, 27 (02) : 1203 - 1225