A counterexample to the Fredholm alternative for the p-Laplacian

被引:16
|
作者
Drábek, P
Takác, P
机构
[1] Univ W Bohemia, Dept Math, CZ-30614 Plzen, Czech Republic
[2] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
nonuniqueness and multiplicity of solutions; resonance for the p-Laplacian; nonlinear Fredholm alternative;
D O I
10.1090/S0002-9939-99-05195-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The following nonhomogeneous Dirichlet boundary value problem for the one-dimensional p-Laplacian with 1 < p < infinity is considered: (*) -(\u'\(p-2)u')' - lambda\u\(p-2)u = f(x) for 0 < x < T; u(0) = u(T) = 0; where f = 1 + h with h is an element of L infinity(0, T) small enough. Solvability properties of Problem (*) with respect to the spectral parameter lambda is an element of R are investigated. We focus our attention on some fundamental differences between the cases p not equal 2 and p = 2. For p not equal 2 we give a counterexample to the classical Fredholm alternative (which is valid for the linear case p = 2).
引用
收藏
页码:1079 / 1087
页数:9
相关论文
共 50 条
  • [41] Weak perturbations of the p-Laplacian
    Tomas Ekholm
    Rupert L. Frank
    Hynek Kovařík
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 781 - 801
  • [42] On the Fucik spectrum of the p-Laplacian
    Cuesta, M
    De Figueiredo, DG
    Gossez, JP
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (06): : 681 - 684
  • [43] On the perturbation of eigenvalues for the p-Laplacian
    Melián, JG
    De Lis, JS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 893 - 898
  • [44] Resonance problems for p-Laplacian
    Bouchala, J
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 61 (3-6) : 599 - 604
  • [45] PRUFER TRANSFORMATION FOR THE p-LAPLACIAN
    Benedikt, Jiri
    Girg, Petr
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, : 1 - 13
  • [46] Solving the p-Laplacian on manifolds
    Troyanov, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) : 541 - 545
  • [47] The p-Laplacian with respect to measures
    Tuhola-Kujanpaa, Anna
    Varpanen, Harri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (01) : 86 - 95
  • [48] On the fractional p-Laplacian problems
    Q-Heung Choi
    Tacksun Jung
    Journal of Inequalities and Applications, 2021
  • [49] Mixed eigenvalues of p-Laplacian
    Chen, Mu-Fa
    Wang, Lingdi
    Zhang, Yuhui
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 249 - 274
  • [50] On Critical p-Laplacian Systems
    Guo, Zhenyu
    Perera, Kanishka
    Zou, Wenming
    ADVANCED NONLINEAR STUDIES, 2017, 17 (04) : 641 - 659