On topological rigidity of projective foliations

被引:0
|
作者
Neto, AL [1 ]
Sad, P [1 ]
Scárdua, B [1 ]
机构
[1] Inst Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
来源
关键词
foliation; rigidity; holonomy group; non solvable group of diffeomorphisms; lamination;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let us denote by chi(n) the space of degree n is an element of N foliations of the complex projective plane CP(2) which leave invariant the line at infinity. We prove that for each n greater than or equal to 2 there exists an open dense subset Rig(n) subset of chi(n) such that any topologically trivial analytic deformation {F-t}(t is an element of D) of an element F-0 is an element of Rig(n), with F-t is an element of chi(n), for all t is an element of D, is analytically trivial. This is an improvement of a remarkable result of Ilyashenko. Other generalizations of these results are given as well as a description of the class of nonrigid foliations.
引用
收藏
页码:381 / 406
页数:26
相关论文
共 50 条
  • [21] ISOPARAMETRIC FOLIATIONS ON COMPLEX PROJECTIVE SPACES
    Dominguez-Vazquez, Miguel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 1211 - 1249
  • [22] POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES
    Dominguez-Vazquez, Miguel
    Gorodski, Claudio
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (03) : 353 - 375
  • [23] LOGARITHMIC FORMS AND SINGULAR PROJECTIVE FOLIATIONS
    Gargiulo Acea, Javier
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) : 171 - 203
  • [24] Transversely projective foliations on Seifert manifolds
    Barbot, T
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (05) : 1551 - +
  • [25] Transversely affine foliations on projective manifolds
    Cousin, Gael
    Pereira, Jorge Vitorio
    MATHEMATICAL RESEARCH LETTERS, 2014, 21 (05) : 985 - 1014
  • [26] On deformation of foliations with a center in the projective space
    Movasati, H
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2001, 73 (02): : 191 - 196
  • [27] Poincar, problem for weighted projective foliations
    Brochero Martinez, F. E.
    Correa, M.
    Rodriguez, A. M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 219 - 235
  • [28] Hilbert modular foliations on the projective plane
    Mendes, LG
    Pereira, JV
    COMMENTARII MATHEMATICI HELVETICI, 2005, 80 (02) : 243 - 291
  • [29] About transversely projective holomorphic foliations
    Touzet, F
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (03) : 815 - +
  • [30] Boundary Rigidity, and Non-Rigidity, of Projective Structures
    Borthwick, Jack
    Kamran, Niky
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)