Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression

被引:19
|
作者
Montesinos-Lopez, Osval A. [1 ]
Montesinos-Lopez, Abelardo [2 ]
Crossa, Jose [3 ]
Burgueno, Juan [3 ]
Eskridge, Kent [4 ]
机构
[1] Univ Colima, Fac Telemat, Colima 28040, Mexico
[2] Ctr Invest Matemat CIMAT, Dept Estadist, Guanajuato 36240, Mexico
[3] Int Maize & Wheat Improvement Ctr CIMMYT, Biometr & Stat Unit, Mexico City 06600, DF, Mexico
[4] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
来源
G3-GENES GENOMES GENETICS | 2015年 / 5卷 / 10期
关键词
Bayesian ordinal regression; genomic selection; probit; logit; Gibbs sampler; GenPred; shared data resource; THRESHOLD MODELS; PLANT; INFERENCE; SELECTION; TRAITS;
D O I
10.1534/g3.115.021154
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Polya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
引用
收藏
页码:2113 / 2126
页数:14
相关论文
共 50 条
  • [31] Ordinal Logistic Regression for Affective Product Design
    Zhou, F.
    Wu, D.
    Yang, X.
    Jiao, J.
    [J]. IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3, 2008, : 1986 - +
  • [32] ALTERNATIVE MODELS FOR ORDINAL LOGISTIC-REGRESSION
    GREENLAND, S
    [J]. STATISTICS IN MEDICINE, 1994, 13 (16) : 1665 - 1677
  • [33] Genomic-enabled prediction with classification algorithms
    L Ornella
    P Pérez
    E Tapia
    J M González-Camacho
    J Burgueño
    X Zhang
    S Singh
    F S Vicente
    D Bonnett
    S Dreisigacker
    R Singh
    N Long
    J Crossa
    [J]. Heredity, 2014, 112 : 616 - 626
  • [34] Assessing Accident Risk using Ordinal Regression and Multinomial Logistic Regression Data Generation
    Alicioglu, Gulsum
    Sun, Bo
    Ho, Shen Shyang
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [35] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [36] ORDINAL REGRESSION FOR INTERACTION QUALITY PREDICTION
    El Asri, Layla
    Khouzaimi, Hatim
    Laroche, Romain
    Pietquin, Olivier
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [37] Bayesian model selection in ordinal quantile regression
    Alhamzawi, Rahim
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 68 - 78
  • [38] ABILITY OF ORDINAL SPLINE LOGISTIC REGRESSION MODEL IN THE CLASSIFICATION OF NUTRITIONAL STATUS DATA
    Arifin, Samsul
    Islamiyati, Anna
    Herdiani, Erna Tri
    [J]. COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [39] Use of ordinal logistic regression in crop yield forecasting
    Kumari, Vandita
    Agrawal, Ranjana
    Kumar, Amrender
    [J]. MAUSAM, 2016, 67 (04): : 913 - 918
  • [40] Analysing cycling sensors data through ordinal logistic regression with functional covariates
    Jacques, Julien
    Samardzic, Sanja
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2022, 71 (04) : 969 - 986