Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression

被引:19
|
作者
Montesinos-Lopez, Osval A. [1 ]
Montesinos-Lopez, Abelardo [2 ]
Crossa, Jose [3 ]
Burgueno, Juan [3 ]
Eskridge, Kent [4 ]
机构
[1] Univ Colima, Fac Telemat, Colima 28040, Mexico
[2] Ctr Invest Matemat CIMAT, Dept Estadist, Guanajuato 36240, Mexico
[3] Int Maize & Wheat Improvement Ctr CIMMYT, Biometr & Stat Unit, Mexico City 06600, DF, Mexico
[4] Univ Nebraska, Dept Stat, Lincoln, NE 68583 USA
来源
G3-GENES GENOMES GENETICS | 2015年 / 5卷 / 10期
关键词
Bayesian ordinal regression; genomic selection; probit; logit; Gibbs sampler; GenPred; shared data resource; THRESHOLD MODELS; PLANT; INFERENCE; SELECTION; TRAITS;
D O I
10.1534/g3.115.021154
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Polya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
引用
收藏
页码:2113 / 2126
页数:14
相关论文
共 50 条
  • [11] Bayesian hierarchical ordinal regression
    Paquet, U
    Holden, S
    Naish-Guzman, A
    [J]. ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 267 - 272
  • [12] Ordinal Logistic Regression With Partial Proportional Odds for Depression Prediction
    Jayawardena, Sadari
    Epps, Julien
    Ambikairajah, Eliathamby
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 563 - 577
  • [13] A guide for kernel generalized regression methods for genomic-enabled prediction
    Abelardo Montesinos-López
    Osval Antonio Montesinos-López
    José Cricelio Montesinos-López
    Carlos Alberto Flores-Cortes
    Roberto de la Rosa
    José Crossa
    [J]. Heredity, 2021, 126 : 577 - 596
  • [14] A guide for kernel generalized regression methods for genomic-enabled prediction
    Montesinos-Lopez, Abelardo
    Montesinos-Lopez, Osval Antonio
    Montesinos-Lopez, Jose Cricelio
    Flores-Cortes, Carlos Alberto
    de la Rosa, Roberto
    Crossa, Jose
    [J]. HEREDITY, 2021, 126 (04) : 577 - 596
  • [15] Ordinal logistic regression in epidemiological studies
    Silva Abreu, Mery Natali
    Siqueira, Arminda Lucia
    Caiaffa, Waleska Teixeira
    [J]. REVISTA DE SAUDE PUBLICA, 2009, 43 (01): : 183 - 194
  • [16] Ordinal logistic regression in medical research
    Bender, R
    Grouven, U
    [J]. JOURNAL OF THE ROYAL COLLEGE OF PHYSICIANS OF LONDON, 1997, 31 (05): : 546 - 551
  • [17] Genomic-Enabled Prediction Based on Molecular Markers and Pedigree Using the Bayesian Linear Regression Package in R
    Perez, Paulino
    de los Campos, Gustavo
    Crossa, Jose
    Gianola, Daniel
    [J]. PLANT GENOME, 2010, 3 (02): : 106 - 116
  • [18] Prediction of Bridge Component Ratings Using Ordinal Logistic Regression Model
    Lu, Pan
    Wang, Hao
    Tolliver, Denver
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [19] Prediction for Public Transit Trip Frequency Using Ordinal Logistic Regression
    Zhang, Zhishun
    Jiang, Rui-sen
    Liu, Ming
    Xu, Ting
    Hao, Yanjun
    Cui, Shichao
    [J]. CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 4374 - 4386
  • [20] Bayesian Approach to Multivariate Component-Based Logistic Regression: Analyzing Correlated Multivariate Ordinal Data
    Park, Ju-Hyun
    Choi, Ji Yeh
    Lee, Jungup
    Kyung, Minjung
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (04) : 543 - 560