A saturation phenomenon for a nonlinear nonlocal eigenvalue problem

被引:2
|
作者
Della Pietra, Francesco [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
WIRTINGER INEQUALITY;
D O I
10.1007/s00030-016-0416-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 1 <= q <= 2 and alpha is an element of R, we study the properties of the solutions of the minimum problem lambda(alpha, q) = min {integral(1)(-1) vertical bar u'vertical bar(2) dx + alpha vertical bar integral(1)(-1) vertical bar u vertical bar(q-1) u dx vertical bar(2/q) /integral(1)(-1) vertical bar u vertical bar(2) dx , u is an element of H-0(1) (-1, 1), u not equivalent to 0). In particular, depending on alpha and q, we show that the minimizers have constant sign up to a critical value of alpha = alpha(q), and when alpha > alpha(q) the minimizers are odd.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] An intermediate local-nonlocal eigenvalue elliptic problem
    Delgado, Manuel
    Santos Junior, Joao R.
    Suarez, Antonio
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (02)
  • [42] Control of a nonlinear system using the saturation phenomenon
    Shoeybi, M
    Ghorashi, M
    NONLINEAR DYNAMICS, 2005, 42 (02) : 113 - 136
  • [43] Control of a Nonlinear System Using the Saturation Phenomenon
    Mohammad Shoeybi
    Mehrdaad Ghorashi
    Nonlinear Dynamics, 2005, 42 : 113 - 136
  • [44] An isoperimetric inequality for a nonlinear eigenvalue problem
    Croce, Gisella
    Henrot, Antoine
    Pisante, Giovanni
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (01): : 21 - 34
  • [45] A NONLINEAR EIGENVALUE PROBLEM .2.
    SHINBROT, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 15 (05) : 368 - 376
  • [46] ISOPERIMETRIC INEQUALITIES FOR A NONLINEAR EIGENVALUE PROBLEM
    BANDLE, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 243 - 246
  • [47] On a nonhomogeneous, nonlinear Dirichlet eigenvalue problem
    Liu, Zhenhai
    Papageorgiou, Nikolaos S. S.
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (09) : 3986 - 4001
  • [48] Positive solutions to a nonlinear eigenvalue problem
    Zhou, Yong-Hui
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 21 (01): : 18 - 22
  • [49] SCHWARZSCHILDS CRITERION AND A NONLINEAR EIGENVALUE PROBLEM
    EISENFELD, J
    JOURNAL OF MATHEMATICS AND MECHANICS, 1969, 18 (10): : 991 - +
  • [50] NUMERICAL SOLUTION OF A NONLINEAR EIGENVALUE PROBLEM
    BOUWKAMP, CJ
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1965, 68 (04): : 539 - &