A saturation phenomenon for a nonlinear nonlocal eigenvalue problem

被引:2
|
作者
Della Pietra, Francesco [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
WIRTINGER INEQUALITY;
D O I
10.1007/s00030-016-0416-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 1 <= q <= 2 and alpha is an element of R, we study the properties of the solutions of the minimum problem lambda(alpha, q) = min {integral(1)(-1) vertical bar u'vertical bar(2) dx + alpha vertical bar integral(1)(-1) vertical bar u vertical bar(q-1) u dx vertical bar(2/q) /integral(1)(-1) vertical bar u vertical bar(2) dx , u is an element of H-0(1) (-1, 1), u not equivalent to 0). In particular, depending on alpha and q, we show that the minimizers have constant sign up to a critical value of alpha = alpha(q), and when alpha > alpha(q) the minimizers are odd.
引用
收藏
页数:18
相关论文
共 50 条