A saturation phenomenon for a nonlinear nonlocal eigenvalue problem

被引:2
|
作者
Della Pietra, Francesco [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
WIRTINGER INEQUALITY;
D O I
10.1007/s00030-016-0416-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 1 <= q <= 2 and alpha is an element of R, we study the properties of the solutions of the minimum problem lambda(alpha, q) = min {integral(1)(-1) vertical bar u'vertical bar(2) dx + alpha vertical bar integral(1)(-1) vertical bar u vertical bar(q-1) u dx vertical bar(2/q) /integral(1)(-1) vertical bar u vertical bar(2) dx , u is an element of H-0(1) (-1, 1), u not equivalent to 0). In particular, depending on alpha and q, we show that the minimizers have constant sign up to a critical value of alpha = alpha(q), and when alpha > alpha(q) the minimizers are odd.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] ALGORITHMS FOR NONLINEAR EIGENVALUE PROBLEM
    RUHE, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) : 674 - 689
  • [33] Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev spaceNonlocal eigenvalue type problem
    Elhoussine Azroul
    Abdelmoujib Benkirane
    Mohammed Srati
    Advances in Operator Theory, 2020, 5 : 1599 - 1617
  • [34] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    I. L. Pokrovski
    Differential Equations, 2018, 54 : 1363 - 1370
  • [35] EIGENVALUE PROBLEM FOR FRACTIONAL DIFFERENCE EQUATION WITH NONLOCAL CONDITIONS
    Zhao, Yongshun
    Sun, Shurong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 32 - 44
  • [36] On a Nonlinear Nonlocal Parabolic Problem
    O. V. Solonukha
    Russian Journal of Mathematical Physics, 2022, 29 : 121 - 140
  • [37] On a Nonlinear Nonlocal Parabolic Problem
    Solonukha, O., V
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2022, 29 (01) : 121 - 140
  • [38] On a Nonlinear Nonlocal Cauchy Problem
    Aizicovici, Sergiu
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 1164 - 1168
  • [39] A new eigenvalue problem for the difference operator with nonlocal conditions
    Sapagovas, Mifodijus
    Ciupaila, Regimantas
    Jakubeliene, Kristina
    Rutkauskas, Stasys
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (03): : 462 - 484
  • [40] Eigenvalue Problem for the Laplace Operator with Nonlocal Boundary Conditions
    Pokrovski, I. L.
    DIFFERENTIAL EQUATIONS, 2018, 54 (10) : 1363 - 1370