A saturation phenomenon for a nonlinear nonlocal eigenvalue problem

被引:2
|
作者
Della Pietra, Francesco [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
WIRTINGER INEQUALITY;
D O I
10.1007/s00030-016-0416-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given 1 <= q <= 2 and alpha is an element of R, we study the properties of the solutions of the minimum problem lambda(alpha, q) = min {integral(1)(-1) vertical bar u'vertical bar(2) dx + alpha vertical bar integral(1)(-1) vertical bar u vertical bar(q-1) u dx vertical bar(2/q) /integral(1)(-1) vertical bar u vertical bar(2) dx , u is an element of H-0(1) (-1, 1), u not equivalent to 0). In particular, depending on alpha and q, we show that the minimizers have constant sign up to a critical value of alpha = alpha(q), and when alpha > alpha(q) the minimizers are odd.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A saturation phenomenon for a nonlinear nonlocal eigenvalue problem
    Francesco Della Pietra
    Gianpaolo Piscitelli
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [2] Sharp estimates and saturation phenomena for a nonlocal eigenvalue problem
    Brandolini, B.
    Freitas, P.
    Nitsch, C.
    Trombetti, C.
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 2352 - 2365
  • [3] Saturation phenomena of a nonlocal eigenvalue problem: the Riemannian case
    Kajanto, Sandor
    Kristaly, Alexandru
    OPTIMIZATION, 2024, 73 (11) : 3299 - 3322
  • [4] Saturation phenomena for some classes of nonlinear nonlocal eigenvalue problems
    Della Pietra, Francesco
    Piscitelli, Gianpaolo
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 131 - 150
  • [5] A NONLOCAL ANISOTROPIC EIGENVALUE PROBLEM
    Piscitelli, Gianpaolo
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (11-12) : 1001 - 1020
  • [6] AN EIGENVALUE PROBLEM FOR NONLOCAL EQUATIONS
    Bisci, Giovanni Molica
    Servadei, Raffaella
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2016, 1 : 69 - 84
  • [7] Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space Nonlocal eigenvalue type problem
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1599 - 1617
  • [8] Nonlinear Eigenvalue Problem for a System of Ordinary Differential Equations Subject to a Nonlocal Condition
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (02) : 213 - 218
  • [9] Nonlinear eigenvalue problem for a system of ordinary differential equations subject to a nonlocal condition
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2012, 52 : 213 - 218