Tensor completion using total variation and low-rank matrix factorization

被引:130
|
作者
Ji, Teng-Yu [1 ]
Huang, Ting-Zhu [1 ]
Zhao, Xi-Le [1 ]
Ma, Tian-Hui [1 ]
Liu, Gang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Resrarch Ctr Image & Vis Comp, Chengdu 611731, Sichuan, Peoples R China
关键词
Tensor completion; Total variation; Low-rank matrix factorization; Block coordinate descent; ALGORITHM;
D O I
10.1016/j.ins.2015.07.049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimizers. Experimental results are reported to demonstrate the effectiveness of the proposed model and the efficiency of the numerical scheme. (C) 2015 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:243 / 257
页数:15
相关论文
共 50 条
  • [1] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Ding, Meng
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Yang, Jing-Hua
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 941 - 964
  • [2] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Meng Ding
    Ting-Zhu Huang
    Teng-Yu Ji
    Xi-Le Zhao
    Jing-Hua Yang
    Journal of Scientific Computing, 2019, 81 : 941 - 964
  • [3] PARALLEL MATRIX FACTORIZATION FOR LOW-RANK TENSOR COMPLETION
    Xu, Yangyang
    Hao, Ruru
    Yin, Wotao
    Su, Zhixun
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (02) : 601 - 624
  • [4] Matrix factorization for low-rank tensor completion using framelet prior
    Jiang, Tai-Xiang
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ji, Teng-Yu
    Deng, Liang-Jian
    INFORMATION SCIENCES, 2018, 436 : 403 - 417
  • [5] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [6] Tensor Factorization with Total Variation and Tikhonov Regularization for Low-Rank Tensor Completion in Imaging Data
    Xue-Lei Lin
    Michael K. Ng
    Xi-Le Zhao
    Journal of Mathematical Imaging and Vision, 2020, 62 : 900 - 918
  • [7] Tensor Factorization with Total Variation and Tikhonov Regularization for Low-Rank Tensor Completion in Imaging Data
    Lin, Xue-Lei
    Ng, Michael K.
    Zhao, Xi-Le
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (6-7) : 900 - 918
  • [8] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [9] Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3434 - 3449
  • [10] Imbalanced low-rank tensor completion via latent matrix factorization
    Qiu, Yuning
    Zhou, Guoxu
    Zeng, Junhua
    Zhao, Qibin
    Xie, Shengli
    NEURAL NETWORKS, 2022, 155 : 369 - 382