Matrix factorization for low-rank tensor completion using framelet prior

被引:65
|
作者
Jiang, Tai-Xiang [1 ]
Huang, Ting-Zhu [1 ]
Zhao, Xi-Le [1 ]
Ji, Teng-Yu [1 ]
Deng, Liang-Jian [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Computat Sci, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
美国国家科学基金会;
关键词
Tensor completion; Framelet; Low-rank matrix factorization; Block successive upper-bound Minimization; IMAGE; APPROXIMATION; ALGORITHM; NOISY;
D O I
10.1016/j.ins.2018.01.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel tensor completion model using framelet regularization and low-rank matrix factorization. An effective block successive upper-bound minimization (BSUM) algorithm is designed to solve the proposed optimization model. The convergence of our algorithm is theoretically guaranteed, and under some mild conditions, our algorithm converges to the coordinate-wise minimizers. Extensive experiments are conducted on the synthetic data and real data, and the results demonstrate the effectiveness and the efficiency of the proposed method. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [1] PARALLEL MATRIX FACTORIZATION FOR LOW-RANK TENSOR COMPLETION
    Xu, Yangyang
    Hao, Ruru
    Yin, Wotao
    Su, Zhixun
    [J]. INVERSE PROBLEMS AND IMAGING, 2015, 9 (02) : 601 - 624
  • [2] Tensor completion using total variation and low-rank matrix factorization
    Ji, Teng-Yu
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Ma, Tian-Hui
    Liu, Gang
    [J]. INFORMATION SCIENCES, 2016, 326 : 243 - 257
  • [3] Tensor Factorization for Low-Rank Tensor Completion
    Zhou, Pan
    Lu, Canyi
    Lin, Zhouchen
    Zhang, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (03) : 1152 - 1163
  • [4] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [5] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Meng Ding
    Ting-Zhu Huang
    Teng-Yu Ji
    Xi-Le Zhao
    Jing-Hua Yang
    [J]. Journal of Scientific Computing, 2019, 81 : 941 - 964
  • [6] Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation
    Ding, Meng
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Yang, Jing-Hua
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 941 - 964
  • [7] Logarithmic Norm Regularized Low-Rank Factorization for Matrix and Tensor Completion
    Chen, Lin
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3434 - 3449
  • [8] Imbalanced low-rank tensor completion via latent matrix factorization
    Qiu, Yuning
    Zhou, Guoxu
    Zeng, Junhua
    Zhao, Qibin
    Xie, Shengli
    [J]. NEURAL NETWORKS, 2022, 155 : 369 - 382
  • [9] A Weighted Tensor Factorization Method for Low-rank Tensor Completion
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    [J]. 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 30 - 38
  • [10] Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization
    Chengfei Shi
    Zhengdong Huang
    Li Wan
    Tifan Xiong
    [J]. Journal of Scientific Computing, 2019, 80 : 1888 - 1912